Home
Class 12
MATHS
If 3 sin alpha=5 sin beta, then (tan((al...

If `3 sin alpha=5 sin beta`, then `(tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN |Exercise EX-02|8 Videos
  • COMPOUND ANGLES

    ALLEN |Exercise EX-S1|9 Videos
  • COMPOUND ANGLES

    ALLEN |Exercise Yourself|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN |Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN |Exercise All Questions|100 Videos

Similar Questions

Explore conceptually related problems

If cot (alpha + beta )=0 , then sin(alpha+2beta ) =

If costheta=(cosalphacosbeta)/(1-sinalphasinbeta) then prove that tan((theta)/(2))=(tan((alpha)/(2))-tan((beta)/(2)))/(1-tan((alpha)/(2))tan((beta)/(2)))

If cosalpha=(3)/(5),cosbeta=(5)/(13),0ltalpha,betalt(pi)/(2) then find the value of sin^(2)((alpha-beta)/(2))andcos^(2)((alpha-beta)/(2)) .

If cosalpha+cosbeta=0=sinalpha+sinbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta) .

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of

A jet plane is at a vertical height of h. The angles of depression of two tanks on the ground in the same line with the plane are alpha and beta (alpha gt beta) . Prove that the distance between the tanks is ( h (tan alpha - tan beta))/(tan alpha tan beta)

If sin(theta+alpha)=aandsin(theta+beta)=b , then prove that cos2(alpha-beta)-4abcos(alpha-beta)=1-2a^(2)-2b^(2) .

Prove that 2tanbeta+cotbeta=tanalphaimplies2tan(alpha-beta)=cotbeta .

Let y = f(x), f : R ->R be an odd differentiable function such that f'''(x)>0 and g(alpha,beta)=sin^8alpha+cos^8beta+2-4sin^2alpha cos^2 beta If f''(g(alpha, beta))=0 then sin^2alpha+sin^2beta is equal to

Let alpha and beta be two distinct complex numbers, such that abs(alpha)=abs(beta) . If real part of alpha is positive and imaginary part of beta is negative, then the complex number (alpha+beta)//(alpha-beta) may be