Home
Class 12
MATHS
If (cos3x)/(cosx)=1/3 for some angle x,0...

If `(cos3x)/(cosx)=1/3` for some angle `x,0<=x<=pi/2` then the value of `(sin3x)/(sinx)` for some `x` is

A

`(7)/(3)`

B

`(5)/(3)`

C

1

D

`(2)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN |Exercise EX-S1|9 Videos
  • COMPOUND ANGLES

    ALLEN |Exercise EX-S2|10 Videos
  • COMPOUND ANGLES

    ALLEN |Exercise EX-01|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN |Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN |Exercise All Questions|100 Videos

Similar Questions

Explore conceptually related problems

If int(1+cosx)/(cosx-cos^(2)x)dx=log|secx+tanx|-f(x)+C ,then f(x)=......

The values of sintheta_(1), cos^(2)theta_(2) and tan theta_(3) are given as 0.5, -0.5 and 3 (not in order), for some angles theta_(1), theta_(2) and theta_(3) . Choose incorrect statement.

f(x)=sinx+cosx+3 . find the range of f(x).

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

The sum of the roots of the equation cos^(-1)(cosx)=[x]. where [x] denotes greatest integer function, is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

If equation (cos^(-1)x)^(4)-8(cos^(-1)x)^(3) + a (cos^(-1)x)^(2)+b (cos^(-1)x)+16=0 has four positive real roots, where a, b epsilon R then [x] = (Where [.] G.I.F.)

cos 3x + cos x -2 cos x =0