Home
Class 12
MATHS
Let fk(x)=(1)/(k)(sin^(k)x+cos^(k)x) whe...

Let `fk_(x)=(1)/(k)(sin^(k)x+cos^(k)x)` where `x in R` and `kge1`. Then `f_(4)(x)-f_(6)(x)` equals:

A

`(5)/(12)`

B

`(-1)/(12)`

C

`(1)/(4)`

D

`(1)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN |Exercise EX-JM|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN |Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN |Exercise All Questions|100 Videos

Similar Questions

Explore conceptually related problems

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

Period of f(x) = sin^4 x + cos^4 x

If f(x)=(1-x)/(1+x)" then "f(x)+ f(1/x)=...... where (x)in R-{0,1}.

Let g(x)=sqrt(x-2k), AA 2k le x lt 2(k+1) where, k in l , then

If f'(x)=1-(4)/(x^(2)) and f(1)=6 then find f(x) and f(2).

If f(x) = {{:((sin^(-1)x)^(2)cos((1)/(x))",",x ne 0),(0",",x = 0):} then f(x) is

If f:R rarr R is continuous function satisfying f(0) =1 and f(2x) -f(x) =x, AAx in R , then lim_(nrarroo) (f(x)-f((x)/(2^(n)))) is equal to

Let f(x)=1/2[f(xy)+f(x/y)] " for " x,y in R^(+) such that f(1)=0,f'(1)=2. f(x)-f(y) is equal to

Let f:R to R and h:R to R be differentiable functions such that f(x)=x^(3)+3x+2,g(f(x))=x and h(g(x))=x for all x in R . Then, h'(1) equals.

If f(x)=(ax+b)/(a+bx)"then"f(x).f(x).f(1/x)=.... . (where x ne 0 )