Home
Class 12
MATHS
If a1,a2,a3, ,an are in A.P., where ai >...

If `a_1,a_2,a_3, ,a_n` are in A.P., where `a_i >0` for all `i` , show that `1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot`

Text Solution

Verified by Experts

L.H.S. `= (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + ....+ (1)/(sqrt(a_(n - 1)) + sqrt(a_(n)))`
`= (1)/(sqrt(a_(2)) + sqrt(a_(1))) + (1)/(sqrt(a_(3)) + sqrt(a_(2))) + .... + (1)/(sqrt(a_(n)) + sqrt(a_(n - 1)))`
`=(sqrt(a_(2)) - sqrt(a_(1)))/((a_(2) - a_(1))) + (sqrt(a_(3)) - sqrt(a_(2)))/((a_(3) - a_(2))) + ... + (sqrt(a_(n))- sqrt(a_(n - 1)))/(a_(n ) - a_(n - 1))`
Let 'd' is the common difference of this A.P.
then `a_(2) - a_(1) = a_(3) - a_(2) = ....... = a_(n) - a_(n -1) = d`
Now L.H.S.
`= (1)/(d) {sqrt(a_(2)) - sqrt(a_(1)) + sqrt(a_(3)) - sqrt(a_(2)) + .... + sqrt(a_(n - 1)) - sqrt(a_(n - 2)) + sqrt(a_(n - 1))} = (1)/(d) {sqrt(a_(n)) - sqrt(a_(1))}`
`= (a_(n) - a_(n))/(d(sqrt(a_(n)) + sqrt(a_(1)))) = (a_(1) + (n - 1) d- a_(1))/(d(sqrt(a_(n)) + sqrt(a_(1)))) = (1)/(d) ((n - 1)d)/(d(sqrt(a_(n)) + sqrt(a_(1)))) = (n - 1)/(sqrt(a_(n)) + sqrt(a_(1))) =` R.H.S
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself|3 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself 2|2 Videos
  • RACE

    ALLEN |Exercise Race 21|13 Videos
  • TEST PAPER

    ALLEN |Exercise CHEMISTRY SECTION-II|16 Videos

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3),……,a_(n) are in AP, where a_(i) gt 0 for all i, show that (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + …..+ (1)/(sqrt(a_(n-1))+ sqrt(a_(n)))= (n-1)/(sqrt(a_(1)) + sqrt(a_(n)))

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

Simplify : (2)/(sqrt5+ sqrt3) + (1)/(sqrt3+sqrt2) - (3)/(sqrt5+sqrt2)

Prove that : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/sqrt2lexle1

Find the value of :- (i) (1)/(sqrt(4)) (ii) (1)/(sqrt(16)) (iii) (1)/(sqrt(64))

x=sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+... , then x is

Which term of the sequence sqrt2, (1)/(sqrt2), (1)/(2 sqrt2) ……is (1)/(512 sqrt2) ?

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Find the sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))