Home
Class 12
MATHS
If a, b, x, y are positive natural numbe...

If a, b, x, y are positive natural numbers such that `(1)/(x) + (1)/(y) = 1` then prove that `(a^(x))/(x) + (b^(y))/(y) ge ab`.

Text Solution

Verified by Experts

Consider the positive number `a^(x), a^(x),....y` times and `b^(y), b^(y),....x` times
For all these numbers,
`AM = ({a^(x) + a^(x) + ...y " times"} + {b^(y) +b^(y) + .... x " times"})/(x + y) = (ya^(x) + xa^(y))/((x + y))`
`GM = {(a^(x). a^(x)...y " times")(b^(y).b^(y)....x " times")}^((1)/((x + y))) = [(a^(xy)).(b^(xy))]^((1)/((x + y))) = (ab)^((xy)/((x + y)))`
As `(1)/(x) + (1)/(y) = 1, (x + y)/(xy) = 1`, i.e., `x + y = xy`
So using `AM ge GM (ya^(x) + xa^(y))/(x + y) ge (ab)^((xy)/(x + y))`
`:. (ya^(x) + xa^(y))/(xy) ge ab " or " (a^(x))/(x) + (a^(y))/(y) ge ab`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself|3 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself 2|2 Videos
  • RACE

    ALLEN |Exercise Race 21|13 Videos
  • TEST PAPER

    ALLEN |Exercise CHEMISTRY SECTION-II|16 Videos

Similar Questions

Explore conceptually related problems

If x,y are real numbers such that 3^((x)/(y)+1) -3^((x)/(y)-1) = 24 , then the value of (x+y)/(x-y) is:-

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If f(x)= y = (ax-b)/(cx-a) , then prove that f(y) = x

e^(x) + e^(y) = e^(x+ y) then prove that, (dy)/(dx) + (e^(x) (e^(y)-1))/(e^(y) (e^(x)-1))=0

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

If 2x= y^((1)/(m)) + y^(-(1)/(m)) (n ge 1) then prove that, (x^(2)-1) y_(2) + xy_(1) = m^(2)y

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

If y= e^(cos^(-1)x), -1 le x le 1 , then prove that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)- y= 0

If x,y, z are three consecutive terms of a G.P. then prove that (1)/(x+y) + (1)/(y+ z)= (1)/(y) .