Home
Class 12
MATHS
Sum up to 16 terms of the series (1^(3))...

Sum up to 16 terms of the series `(1^(3))/(1) + (1^(3) + 2^(3))/(1 + 3) + (1^(3) + 2^(3) + 3^(3))/(1 + 3 + 5) + ..` is

A

450

B

456

C

446

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`t_(n) = (1^(3) + 2^(3) + 3^(3) + .... + n^(3))/(1 +3 + 5 + ...(2n -1)) = ({(n(n + 1))/(2)}^(2))/((n)/(2) {2 + 2 (n -1)}) = ((n^(2) (n + 1)^(2))/(4))/(n^(2)) = ((n+1)^(2))/(4) ==(n^(2))/(4) + (n)/(2) + (1)/(4)`
`:. S_(n) = Sigmat_(n) = (1)/(4) Sigman^(2) + (1)/(2) Sigman + (1)/(4) Sigma 1 = (1)/(4) .(n(n + 1)(2n + 1))/(6) + (1)/(2). (n(n + 1))/(2) + (1)/(4). n`
`:. S_(16) = (16.17.33)/(24) + (16.17)/(4) + (16)/(4) = 446`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself|3 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself 2|2 Videos
  • RACE

    ALLEN |Exercise Race 21|13 Videos
  • TEST PAPER

    ALLEN |Exercise CHEMISTRY SECTION-II|16 Videos

Similar Questions

Explore conceptually related problems

The sum of first 9 terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+"........" is

Sum of the n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(3))+"......." is

Find the sum of n terms of each of the following 1^(2) + ((1^(2) + 2^(2))/(2)) + ((1^(2) + 2^(2) + 3^(2))/(3)) + …..

Find the sum 1+ (1^(3) + 2^(3))/(2) + (1^(3) + 2^(3) + 3^(3))/(3) + …….(1^(3) + 2^(3) + 3^(3) + …..+ 20^(3))/(20)

Find the sum to n terms of each of the series in 1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ...

(1^(3)+2^(3)+3^(3)+4^(3))^(-3//2)=

(5(8^(1/3)+27^(1/3))^(3))^(1/4) =

Find the sum of the following series up to n terms: 1^3/1+(1^3+2^3)/(1+3)+(1^3+2^3+3^3)/(1+3+5)+.......

Find the sum: (1)/(3) + (2)/(3^(2)) + (1)/(3^(3)) + (2)/(3^(4)) + (1)/(3^(5)) + (2)/(3^(6)) + …..oo

Find the sum to n terms of each of the series in 3 × 1^(2) + 5 × 2^(2) + 7 × 3^(2) +.........