Home
Class 12
MATHS
If sum(r=1)^(n)T(r)=(n)/(8)(n+1)(n+2)(n+...

If `sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r))`.

Text Solution

Verified by Experts

`:. T_(n) = S_(n) - S_(n - 1)`
`=underset(r = 1)overset(n)sum T_(r) - underset(r = 1)overset(n -1)sum T_(r) = (n (n + 1) (n + 2) (n + 3))/(8) - ((n - 1) n (n + 1) (n + 2))/(8) = (n(n + 1) (n + 2))/(8) [(n + 3) - (n - 1)]`
`T_(n) = (n (n + 1) (n + 2))/(8) (4) = (n(n + 1) (n + 2))/(2)`
`rArr (1)/(T_(n)) = (2)/(n (n + 1) (n + 2)) = ((n + 2) - n)/(n(n + 1) (n + 2)) = (1)/(n(n + 1)) - (1)/((n + 1)(n + 2))`...(i)
Let `V_(n) = (1)/(n (n + 1))`
`:. (1)/(T_(n)) = V_(n) - V_(n + 1)`
Putting `n = 1, 2, 3, ... n`
`rArr (1)/(T_(1)) + (1)/(T_(2)) + (1)/(T_(3)) + ... + (1)/(T_(n)) = (V_(1) - V_(n + 1)) rArr underset(r = 1)overset(n)sum (1)/(T_(r)) = (n^(2) + 3n)/(2(n + 1) (n + 2))`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself|3 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself 2|2 Videos
  • RACE

    ALLEN |Exercise Race 21|13 Videos
  • TEST PAPER

    ALLEN |Exercise CHEMISTRY SECTION-II|16 Videos

Similar Questions

Explore conceptually related problems

If t_(1)=1,t_(r )-t_( r-1)=2^(r-1),r ge 2 , find sum_(r=1)^(n)t_(r ) .

IF f(r )=1+(1)/(2)+(1)/(3)+"...."+(1)/(r ) and f(0)=0 , find sum _(r=1)^(n)(2r+1)f(r ) .

sum_(r=1)^n(2r+1)=...... .

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2)(n+3))/(12) where T_(r) denotes the rth term of the series. Find lim_(nto oo) sum_(r=1)^(n)(1)/(T_(r)) .

Evaluate sum_(r=1)^(n)rxxr!

Statement -1 If Delta(r)=|{:(r,r+1),(r+3,r+4):}| then sum_(r=1)^(n) Delta(r)=-3n Satement-2 If Delta(r)=|{:(f_(1)(r),f_(2)(r)),(f_(3)(r),f_(4)(r)):}| Sigma_(r=1)^(n) Delta (r)={:abs((Sigma_(r=1)^(n)f_1(r),Sigma_(r=1)^(n)f_2(r)),(Sigma_(r=1)^(n)f_3(r),Sigma_(r=1)^(n) f_4(r))):}

The sequence a_(1),a_(2),a_(3),".......," is a geometric sequence with common ratio r. The sequence b_(1),b_(2),b_(3),".......," is also a geometric sequence. If b_(1)=1,b_(2)=root4(7)-root4(28)+1,a_(1)=root4(28)" and "sum_(n=1)^(oo)(1)/(a_(n))=sum_(n=1)^(oo)(1)/(b_(n)) , then the value of (1+r^(2)+r^(4)) is

Let a_(n) be the nth term of an AP, if sum_(r=1)^(100)a_(2r)=alpha " and "sum_(r=1)^(100)a_(2r-1)=beta , then the common difference of the AP is

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then