Home
Class 12
MATHS
The natural number a for which sum(k=1)^...

The natural number `a` for which `sum_(k=1)^n f(a+k)=16(2^n-1)` where the function f satisfies the relation `f(x+y)=f(x).f(y)` for all natural numbers x,y and further `f(1)=2` is:-
A) 2 B) 3 C) 1 D) none of these

Text Solution

Verified by Experts

It is given that
`f(x + y) = f (x) f(y) and f(1) = 2`
`f (1 + 1) = f (1) f (1) rArr f(2) = 2^(2), f (1 + 2) = f(1) f(2) rArr f(3) = 2^(3), f (2 + 2) = f (2) f(2) rArr f (4) = 2^(4)`
Similarly `f(k) = 2^(k) and f(a) = 2^(a)`
Hence, `underset(k = 1)overset(n)sum f (a + k) = underset(k =1)overset(n)sum f (a) f(k) = f (a) underset(k =1)overset(n)sumf (k) = 2^(a) underset(k = 1)overset(n)sum 2^(k) = 2^(a) {2^(1) + 2^(2) + ... + 2^(n)}`
`= 2^(a) {(2(2^(n) -1))/(2 -1)} = 2^(a+1) (2^(n) - 1)`
But `underset(k =1)overset(n)sum f (a + k) = 16(2^(n) -1)`
`2^(a + 1) (2^(n) - 1) = 16 (2^(n) -1)`
`:. 2^(a + 1) = 2^(4)`
`:. a + 1 = 4 rArr a = 3`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself|3 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN |Exercise Do yourself 2|2 Videos
  • RACE

    ALLEN |Exercise Race 21|13 Videos
  • TEST PAPER

    ALLEN |Exercise CHEMISTRY SECTION-II|16 Videos

Similar Questions

Explore conceptually related problems

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all positive real numbers xa n dydot If f(30)=20 , then find the value of f(40)dot

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)| for all x,y in R. If f'(0) exists, prove that f'(x) exists for all x, in R.

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

Consider function f(x) satisfies the relation f(x+y^(3))=f(x)+f(y^(3))AAx,yinRand differentiable for all x . Statement I If f'(2)=a then f'(-2)=a f(x) is an odd function.

For x inR - {1} , the function f(x ) satisfies f(x) + 2f(1/(1-x))=x . Find f(2) .

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f'(1)=1, then f(e) is.

A function f : R rarr R satisfies the equation f(x + y) = f(x) . f(y) for all, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2. Then,