Home
Class 12
PHYSICS
If vec(A)=2hati+hatj+hatk " and " vecB=1...

If `vec(A)=2hati+hatj+hatk " and " vecB=10hati+5hatj+5hatk`, if the magnitude of component of `(vec(B)-vec(A))` along `vec(A)` is `4sqrt(x)`. Then x will be .

Text Solution

Verified by Experts

The correct Answer is:
6

`r=vec(B)-vec(A)=4(2hati+hatj+hatk)`
`r cos theta =(vecr.vec(A))/(|A|)=(4(4+1+1))/(sqrt(6))=4sqrt(6)`
`x=6`
Promotional Banner

Topper's Solved these Questions

  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN |Exercise Exercise (S-1)|22 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN |Exercise Exercise (S-2)|7 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN |Exercise Exercise (J-A)|7 Videos
  • TEST PAPERS

    ALLEN |Exercise MATHS|1 Videos
  • WAVE OPTICS

    ALLEN |Exercise Exercise 2 (Previous Year Questions)|7 Videos

Similar Questions

Explore conceptually related problems

vecA = 2 hati +3 hatJ +4 hatk and vecB =4 hati +5 hatj +3 hatk , then the magnitudes of vecA -vecB …unit

vecA=3hati+2hatj and vecB=hati+hatj-2hatk" in "vecA-vecB magnitude of y-component will be …... .

If a=2hati+2hatj-8hatk and b=hati+2hatj-4hatk , then the magnitude of a+b is equal to

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If veca=2hati-hatj-5hatk and vecb=hati+hatj+2hatk , then find scalar and vector product.

If vec(a)=2hati+hatj+x hatk and vec(b)=hati+hatj-hatk then the minimum area of a parallelogram formed by the vectors vec(a) and vec(b) is ………….

vec(a)=2hati-2hatj+hatk,vec(b)=hati+2hatj-2hatk and vec( c )=2hati-hatj+4hatk then find the projection of vec(b)+vec( c ) on vec(a) .

If vec(a)=5hati-hatj-3hatk and vec(b)=hati+3hatj-5hatk , then show that the vectors vec(a)+vec(b) and vec(a)-vec(b) are perpendicualr.

Find |vecaxxvecb| , if veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk