Home
Class 12
PHYSICS
If vecA.vecB=vec0 and vecAxxvecC=vec0, t...

If `vecA.vecB=vec0` and `vecAxxvecC=vec0`, then the angle between `vecB` and `vecC` is

Text Solution

Verified by Experts

The correct Answer is:
`45^(@)`

`:' m=k tan theta`
`:. Dm= k sec^(2) theta d theta`
`rArr (dm)/m=(k sec^(2) theta)/(k tan theta) d theta`
`rArr (dm)/m=(d theta)/(sin theta cos theta)=(2d theta)/(sin 2theta)`
`rArr %` error is minimum when `sin 2 theta`
has maximum value hence `2theta=pi/2` or `theta=45^(@)`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If vecA xx vecB= vec0 and vecB xx vecC=vec0 , then the angle between vecA and vecC may be :

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

if| vecAxxvecB|=|vecA.vecB| , then angle between vecA and vecB will be

If vecA+ vecB = vecC and A+B=C , then the angle between vecA and vecB is :

The magnitudes of vectors vecA,vecB and vecC are respectively 12,5 and 13 unit and vecA+vecB=vecC , then the angle between vecA and vecB is :

If |vecAxxvecB|=vecA*vecB , then angle between vecA and vecB" is "theta = …...

If |vecAxxvecB|=AB , then angle between vecA and vecB will be zero.

If vecA*vecB=AB , then angle between vecA and vecB will be …... .

Let vec(A), vec(B) and vec(C) , be unit vectors. Suppose that vec(A).vec(B)=vec(A).vec(C)=0 and the angle between vec(B) and vec(C) is pi/6 then

If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then find the angle between vec(A) and vec(B)