Home
Class 12
PHYSICS
The resultant of vec(A)+vec(B) is vec(...

The resultant of `vec(A)+vec(B) is vec(R )_(1)`. On reversing the vector `vec(B)`, the resultant becomes `vec(R )_(2)`. What is the value of `R_(1)^(2)+R_(2)^(2)`?

Text Solution

Verified by Experts

The correct Answer is:
`(3hat(i)+94hat(j)+4hat(k)) m//s`

`vec(v)=Ahat(i)+(3Bt^(2)-2)hat(j)+(2ct-4)hat(k)`
At `t=2, Ahat(i)+(12B-2)hat(j)+(4c-4)hat(k)=3hat(i)+22hat(j)`
Thus, `A=3, B=2, C=1`
`:. Vec(v)=3hat(i)+(6t^(2)-2)hat(j)+(2t-4)hat(k)`
At `t=4, vec(v)=3hat(i)+(96-2)hat(j)+(8-4)hat(k)=3hat(i)+94hat(j)+4hat(k)`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The resultant of two vectors vec(P) and vec(Q) is vec(R) . If vec(Q) is doubled then the new resultant vector is perpendicular to vec(P) . Then magnitude of vec(R) is :-

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

If vec(A) =2hat(i)-2hat(j) and vec(B)=2hat(k) then vec(A).vec(B) ……

Given that vec(a).vec(b)=0 and vec(a)xx vec(b)=0 . What can you conclude about the vectors vec(a) and vec(b) ?

If |vec(a)|=10,|vec(b)|=2 and vec(a).vec(b)=12 then find |vec(a)xx vec(b)| .

If |vec(a)|=2,|vec(b)|=5 and vec(a).vec(b)=10 then find |vec(a)-vec(b)| .

If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .

Given that P=Q=R . If vec(P)+vec(Q)=vec(R) then the angle between vec(P) and vec(R) is theta_(1) . If vec(P)+vec(Q)+vec(R)=vec(0) then the angle between vec(P) and vec(R) is theta_(2) . The relation between theta_(1) and theta_(2) is :-