Home
Class 12
PHYSICS
Given that vecA=vecB . What is the angle...

Given that `vecA=vecB` . What is the angle between `(vecA+vecB)` and `(vecA-vecB)` ?

Text Solution

Verified by Experts

The correct Answer is:
(i) `vec(v)=(5sint-3)hat(i)+(3 cost-1)hat(j)`, (ii) `(2-5 cost-3t)hat(i)+(2+3sin t-t)hat(j)`

`vec(a)=5 cos that(i)-3 sin that(j)`
`rArr int dvec(v)=int 5 cos t dthat(i)-int 3 sin tdthat(j)`
Therefore `underset(-3)overset(v)(int)dv_(x)=underset(0)overset(t)(int)5 cos tdt rArr v_(x)=5 sin t-3`
`(dx)/(dt)=(5 sint-3)rArr underset(-3)overset(x)(int)dx=underset(0)overset(t)(int)(5 sint-3)dt`
`x+3=5-5 cost-3t rArr x=2-5 cost-3t`
Similarly,
`underset(2)overset(v)(int)dv_(y)=-underset(0)overset(t)(int)3 sin tdt`
`rArr v_(y)-2=3(cost-1)rArr v_(y)=3 cost-1`
`rArr underset(2)overset(y)(int)dy=underset(0)overset(t)(int)(3 cost-1)dt`
`rArr y-2=3 sin-t rArr y=2+3 sint-t`
Thus, `vec(v)=(5sint-3)hat(i)|(3cos t-1)hat(j)`
and `vec(s)=(2-5 cos t-3t)hat(i)+(2+3 sin t-t)hat(j)`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The resultant of vecA and vecB is perpendicular to vecA . What is the angle between vecA and vecB ?

What is the value of (vecA + vecB) * ( vecA xx vecB) ?

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

(vecA+2vecB).(2vecA-3vecB) :-

What is the angle between vecA and the resultant of (vecA+vecB) and (vecA-vecB) ?

The vector vecA and vecB are such that |vecA+vecB|=|vecA-vecB| . The angle between vectors vecA and vecB is -

What is the projection of vecA on vecB ?

If vecA*vecB=AB , then angle between vecA and vecB will be …... .

Two vectors vecA" and "vecB have equal magnitudes. If magnitude of vecA+vecB is equal to n times the magnitude of vecA-vecB , then the angle between vecA" and "vecB is :-

If vecA+ vecB = vecC and A+B=C , then the angle between vecA and vecB is :