Home
Class 11
MATHS
If in a triangle ABC, 2 (cos A)/(a)+(cos...

If in a triangle ABC, `2 (cos A)/(a)`+(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/(ca)` then the value of the angle A is

A

`pi/3`

B

`pi/4`

C

`pi/2`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

In a triangle ABC, if (a+b+c)(a+b-c)(b+c-a)(c+a-b)=(8a^2b^2c^2)/(a^2+b^2+c^2) then the triangle is

In a triangle ABC, cos 3A + cos 3B + cos 3C = 1 , then then one angle must be exactly equal to

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))

If in a triangle ABC, /_C=60^@ , then prove that 1/(a+c)+1/(b+c)=3/(a+b+c)

For any triangle ABC, prove that : (a-b)/(c )=(sin((A-B)/(2)))/(cos((C)/(2)))