Home
Class 11
MATHS
If Sigma(r=1)^(10) r(r-1) ""^(10)Cr = k....

If `Sigma_(r=1)^(10) r(r-1) ""^(10)C_r = k. 2^9`

A

10

B

45

C

90

D

100

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series Sigma_(r=1)^(n) r x^(r-1) using calculus .

The sum of the series sum_(r=0)^(10) .^(20)C_(r) , is 2^(19)+{(.^(20)C_(10))/2} .

Statement -1 If Delta(r)=|{:(r,r+1),(r+3,r+4):}| then sum_(r=1)^(n) Delta(r)=-3n Satement-2 If Delta(r)=|{:(f_(1)(r),f_(2)(r)),(f_(3)(r),f_(4)(r)):}| Sigma_(r=1)^(n) Delta (r)={:abs((Sigma_(r=1)^(n)f_1(r),Sigma_(r=1)^(n)f_2(r)),(Sigma_(r=1)^(n)f_3(r),Sigma_(r=1)^(n) f_4(r))):}

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

sum_(r=1)^n(2r+1)=...... .

Fine r if (i) ""^(5) P_(r) =2 ""^(6)P_(r-1) (ii) ""^(5) P_(r) = ""^(6)P_(r-1)

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

If D_r=|2^(r-1)2(3^(r-1))4(5^(r-1))x y z2^n-1 3^n-1 5^n-1| then prove that sum_(r=1)^n D_r=0.

Let a_(n) be the nth term of an AP, if sum_(r=1)^(100)a_(2r)=alpha " and "sum_(r=1)^(100)a_(2r-1)=beta , then the common difference of the AP is