Home
Class 11
MATHS
Find the sum of the series sum(r=1)^(...

Find the sum of the series
`sum_(r=1)^(n) (-1)^(r)""^(n)C_(r) {(1)/(2^(r)) + (3^(r))/(2^(2r)) + (7^(r))/(2^(3r)) + (15^(r))/(2^(4r)) + ..."upto m terms"}` .

Text Solution

Verified by Experts

The correct Answer is:
`(2^(mn)-1)/((2^n-1)(2^(mn))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Find the sum of the series Sigma_(r=1)^(n) r x^(r-1) using calculus .

The sum of the series sum_(r=0)^(10) .^(20)C_(r) , is 2^(19)+{(.^(20)C_(10))/2} .

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

Evaluate sum_(r=1)^(n)rxxr!

sum_(r=1)^n(2r+1)=...... .

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

sum_(r=0)^(1theta)((10),(r)).2^(10-r)(-5)^(r)=.........

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to