Home
Class 11
MATHS
Let (1+x^2)^2 . (1+x)^n = Sigma(k=0)^(n+...

Let `(1+x^2)^2 . (1+x)^n = Sigma_(k=0)^(n+4) (a_k).x ^k "if" a_1,a_2 & a_3` are in AP find n

Text Solution

Verified by Experts

The correct Answer is:
n=2 of 3 or 4
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

The value of 5 * cot ( Sigma_(k =1)^(5) cot ^(-1) ( k^(2) + k + 1)) is equal to

if omega is the nth root of unity and Z_1 , Z_2 are any two complex numbers , then prove that . Sigma_(k=0)^(n-1)| z_1+ omega^k z_2|^2=n{|z_1|^2+|z_2|^2} where n in N

Let f(x)=cos(a_1+x)+1/2cos(a_2+x)+1/(2^2)cos(a_3+x)++1/(2^(n-1))cos(a_n+x) where a)1,a_2 a_n in Rdot If f(x_1)=f(x_2)=0,t h e n|x_2-x_1| may be equal to pi (b) 2pi (c) 3pi (d) pi/2

prove that if the variance of the observations x_1,x_2,x_3,…….,x_n is sigma^2 then the variance of x_1+a,x_2 +a, x_3 + a,………….., x_n + a is sigma^2 .

Let y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = lim_(n rarr oo) y_(n) (x) . Discuss the continuity of y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0

If alpha=e^(i2pi//7)a n df(x)=a_0+sum_(k=1)^(20)a_k x^k , then prove that the value of f(x)+f(alpha, x)++f(alpha^6x) is independent of alphadot

The angle between the lines (x-1)/(2) = (y+1)/(1) =(1-z)/2 and x = k + 1, y =2 k -1, z=2k +3, k in R is .....

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If P(n)=2+4+6+....+2n, n in N . Then P(k) =k(k+1) rArr P(k+1)=(k+1)(k+2),forall k in N , So , we can conclude that P(n)=n(n+1) for