Home
Class 11
MATHS
Given that (1+x+x^2)^n=a0+a1x+a2x^2+.......

Given that `(1+x+x^2)^n=a_0+a_1x+a_2x^2+.....+a_(2n)x^(2n)` find i) `a_0 + a_1 +a_2 .. . . .+ a_(2n)` ii) `a_0 - a_1 + a_2 - a_3 . . . . + a_(2n) ` iii) `(a_0)^2 - (a_1)^2 . . . . .+ (a_(2n))^2`

Text Solution

Verified by Experts

The correct Answer is:
(i) `3^(n)` (ii) 1
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

What does a_(1) + a_(2) + a_(3) + …..+ a_(n) represent

Differentiate a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n)

(1+x-2x^(2))^(6)=1+a_(1),x+a_(2)x^(2)+….+a_(12)^(12) then the value of a_(2) +a_(4)+a_(6)+….+a_(12)=………

p(x)=a_(0)+a_(1)x^(2)+a_(2)x^(4)+…………+a_(n)x^(2n) is a polynomial with real variable x. If 0 lt a_(0)lt a_(1)lt a_(2)lt ……….lt a_(n) then p(x) has …………

If a_(i) gt 0 AA I in N such that prod_(i=1)^(n) a_(i) = 1 , then prove that (a + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)

(1+x)^(10)=a_(0)+a_(1)x+a_(2)x^(2)+……..+a_(10)x^(10) then the value of (a_(0)-a_(2)+a_(4)-a_(6)+a_(8)-a_(10))^(2)+(a_(1)-a_(3)+a_(5)-a_(7)+a_(9))^(2) is ……

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

if (1+ax+bx^(2))^(4)=a_(0) +a_(1)x+a_(2)x^(2)+…..+a_(8)x^(8), where a,b,a_(0) ,a_(1)…….,a_(8) in R such that a_(0)+a_(1) +a_(2) ne 0 and |{:(a_(0),,a_(1),,a_(2)),(a_(1),,a_(2),,a_(0)),(a_(2),,a_(0),,a_(1)):}|=0 then the value of 5.(a)/(b) " is " "____"