Home
Class 11
MATHS
Prove the following identieties using th...

Prove the following identieties using the theory of permutation where `C_(0),C_(1),C_(2),……C_(n)` are the combinatorial coefficents in the expansion of `(1+x)^n,n in N:`
`""^(100)C_(10)+5.""^(100)C_(11)+10 .""^(100)C_(12)+ 10.""^(100)C_(13)+ 10.""^(100)C_(14)+ 10.""^(100)C_(15)=""^(105)C_(90)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

If ""^(n)C_(9)=""^(n)C_(8) , find ""^(n)C_(17) .

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

10 C_(1)+10 C_(3) +10 C_(5) +10 C_(7) +10 C_(9) = …….

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

Determine n if ""^(2n)C_(3):""^(n)C_(3)=12:1 .

The sum of coefficients of the two middle terms in the expansion of (1+x)^(2n-1) is equal to (2n-1)C_(n)

Determine n if ""^(2n)C_(3):""^(n)C_(3)=11:1