Home
Class 11
MATHS
If C(0),C(1),C(2)…….,C(n) are the combin...

If `C_(0),C_(1),C_(2)…….,C_(n)` are the combinatorial coefficient in the expansion of `(1+x)^n, n, ne N`, then prove that following
`C_(1)+2C_(2)+3C_(3)+..+n.C_(n)=n.2^(n-1)`
`C_(0)+2C_(1)+3C_(2)+......+(n+1)C_(n)=(n+2)C_(n)=(n+2)2^(n-1)`
` C_(0),+3C_(1)+5C_(2)+.....+(2n+1)C_n =(n+1)2^n`
`(C_0+C_1)(C_1+C_2)(C_2+C_3)......(C_(n-1)+C_n)=(C_0.C_1.C_2....C_(n-1)(n+1)^n)/(n!)`
`1.C_0^2+3.C_1^2+....+ (2n+1)C_n^2=((n+1)(2n)!)/(n! n!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of coefficients of the two middle terms in the expansion of (1+x)^(2n-1) is equal to (2n-1)C_(n)

If ""^(n)C_(9)=""^(n)C_(8) , find ""^(n)C_(17) .

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

If .^(n)C_(9)=.^(n)C_(7) , find n.

If .^(20)C_(n+1)=.^(n)C_(16) , the value of n is

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

1+2+3+…….+(n+1)= ((n+1) (n+2))/(2) , n in N .