Home
Class 11
MATHS
If (1+x)^n=C0+C1x+C2x^2+……..+Cnx^n in N ...

If `(1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n in N` prove that
(a) `3 C_0- 8C_1+13C_2-18C_3+...."upto" (n+1) term=0 if n ge 2 `
(b ) `2C_0+2^2(C_1)/(2)+2^3(C_2)/(3)+2^4C_(3)/4+....+2^(n+1)(C_n)/(n+1)=(3^n+1-1)/(n+1)`
( c) `C_0^2+(C_1^2)/2+C_2^2/3+....+C_n^2/(n+1)=((2n+1)!)/(((n+1)!)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

Prove that 1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......

If .^(20)C_(n+1)=.^(n)C_(16) , the value of n is

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

Determine n if ""^(2n)C_(3):""^(n)C_(3)=12:1 .