Home
Class 11
MATHS
Solve for x: (1.25)^(1-x) gt (0.64)^(2(1...

Solve for x: `(1.25)^(1-x) gt (0.64)^(2(1+sqrt(x))`

Text Solution

Verified by Experts

We have `(5/4)^(1-x) gt (16/25)^(2(1+sqrt(x))` or `(4/5)^(x-1) gt (4/5)^(4(1+sqrt(x))`
Since the base `0 gt 4/5 gt 1`, the inequality to the inequality `x-1 gt 4(1+sqrt(x))`
`rArr (x-5)/4 gt sqrt(x)`
Now, RHS is positive
`rArr (x-5)/4 gt rArr x gt 5`.........(i)
We have `(x-5)/4 gt sqrt(x)`
both sides are positive, so squaring both side
`rArr (x-5)^(2)/16 gt x` or `(x-5)^(2)/16 -x gt 0`
or `x^(2)-26x+25 gt 0` or `(x-25)(x-1) gt 0`
`rArr x in (-infty,1) cup (25, infty)`.................(ii)
intersection (i) and (ii) gives `x in (25,infty)`
Promotional Banner

Similar Questions

Explore conceptually related problems

solve for x : (1) x^(2) + (1)/(x^(2))=(17)/(4) (2) (x+1)/(x)+(x)/(x+1)=(25)/(12) (3) x^(2)+(1)/(x^(2))+x+(1)/(x)-4=0

Solve sqrt(5)x^(2) + x + sqrt(5)=0

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

Solve x^(2) + x + 1=0

Prove that : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/sqrt2lexle1

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/4+1/2cos^(-1)x^(2) .

if 0 lt x lt 1 then tan^(-1) (sqrt(1-x^2)/(1+x^2)) is equal to (i) 1/2 cos^(-1)x (ii) cos^(-1)sqrt((1+x)/2) (iii) sin^(-1)sqrt((1-x)/2) (iv) 1/2 tan^(-1)((1+x)/(1-x))

Solve the inequation 3^(x+2)gt(1/9)^(1//x) .

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1