Home
Class 11
MATHS
Prove that (2cos2A+1)/(2cos2A-1)=tan(60^...

Prove that `(2cos2A+1)/(2cos2A-1)=tan(60^0+A)tan(60^0-A)`

Text Solution

Verified by Experts

RHS `=tan(60^(@)+A)tan(60^(@)-A)`
`=((tan60^(@)+tanA)/(1-tan60^(@)tana))((tan60^(@)-tanA)/(1+tan60^(@)tanA)) = ((sqrt(3)+tanA)/(1-sqrt(3)tanA))((sqrt(3)-tanA)/(1+sqrt(3)tanA))`
`=(3-tan^(2)A)/(1-3tan^(2)A) = (3-(sin^(2)A)(cos^(2)A))/(1-3(sin^(2)A)/(cos^(2)A)) = (3cos^(2)A-sin^(2)A)/(cos^(2)A-3sin^(2)A) = (2cos^(2)A+cos^(2)A-2sin^(2)A+sin^(2)A)/(2cos^(2)A-2sin^(2)A-sin^(2)A-cos^(2)A)`
`=(2(cos^(2)A-sin^(2)A)+cos^(2)A+sin^(2)A)/(2(cos^(2)A-sin^(2)A)-cos^(2)A)`
`=(2(cos^(2)A-sin^(2)A)+cos^(2)A+sin^(2)A)/(2(cos^(2)A-sin^(2)A))-(sin^(2)A+cos^(2)A) = (2cos2A+1)/(2cos2A-1)`= LHS
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (4cos^2 9^0-3)(4cos^2 27^0-3)=tan9^0dot

Prove that : t a n A+tan(60^0+A)+tan(120^0+A)=3t a n3A

By using above basic addition/ subtraction formulae, prove that (i) tan (A+B)=(tan A+tan B)/(1-tan A tan B) , (ii) tan (A-B)=(tan A-tanB)/(1+tan A tan B) (iii) sin2theta=2sintheta costheta , (iv) cos2theta=cos^(2)theta=1-2sin^(2)theta=2cos^(2)theta-1 (v) tan 2theta=(2 tan theta)/(1-tan^(2) theta)

Prove that : sin^(2)((pi)/(6))+cos^(2)((pi)/(3))-tan^(2)((pi)/(4))=-(1)/(2)

Prove that tan^-1(1/7)+tan^-1(1/13)=tan^-1(2/9)

Prove that (sin A +cosec A) ^(2) +(cos A +sec A) ^(2) =7+ tan ^(2) A +cot ^(2) A

Prove that: 2tan^(-1)1/2+tan^(-1)1/7=tan^(-1)(31)/(17)

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

Show that 2(cos^(4)60^(@)+sin^(4)30^(@))-(tan^(2)60^(@)+cot^(2)45^(@))+3sec^(2)30^(@)=1/4

Prove the followings : tan(pi/4+1/2"cos"^(-1)a/b)+tan(pi/4-1/2"cos"^(-1)a/b)=(2b)/a