Home
Class 11
MATHS
if log2(log3(log4x))=0 and log3(log4(log...

if `log_2(log_3(log_4x))=0` and `log_3(log_4(log_2y))=0`and `log_3(log_2(log_3z))=0` then find the sum of `x, y` and `z` is

A

89

B

58

C

105

D

49

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(2)(log_(4)(x))) = 0, log_(3)(log_(4)(log_(2)(y))) = 0 and log_(4)(log_(2)(log_(3)(z))) = 0 then the sum of x,y and z is-

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If log_2 log_3 log_4 (x+1) =0, then x is :-

Solve for x :(log)_4(log)_3(log)_2x=0

let y=sqrt(log_2(3)log_2(12)log_2(48)log_2(192)+16)-log_2(12)log_2(48)+10 find y in N

Let log_(c)ab = x, log_(a)bc = y and log_(b) ca = z . Find the value of (xyz - x - y - z) .

If log_(4)5 = x and log_(5)6 = y then

If log_3 2, log_3 (2^x -5) and log_3 (2^x-7/2) are in A.P , determine the value of x .

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals