Home
Class 11
MATHS
log(10)(log(2)3) + log(10)(log(3)4) + ……...

`log_(10)(log_(2)3) + log_(10)(log_(3)4) + …………+log_(10)(log_(1023)1024)` simplies to

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

If log_(2)(log_(4)(x))) = 0, log_(3)(log_(4)(log_(2)(y))) = 0 and log_(4)(log_(2)(log_(3)(z))) = 0 then the sum of x,y and z is-

Series (1)/(log_(2)^(2)) + (1)/(log_(4)^(4)) + (1)/(log_(8)^(4)) + …..+ (1)/(log_(2^(n))4) =……….

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

let y=sqrt(log_2(3)log_2(12)log_2(48)log_2(192)+16)-log_2(12)log_2(48)+10 find y in N

If log_(sqrt(2)) sqrt(x) +log_(2)x + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

Solve for x : x+(log)_(10)(1+2^x)=x(dot(log)_(10)5+log_(10)6)

The ratio (2^(log_(2)a^4)-3^(log_(27)(a^2+1)^3)-2a)/((7^(4log_(49)a)-a-1)) simplfies to

Given system of simultaneous equations 2^x\ . 5^y=1\ a n d\ 5^(x+1). 2^y=2. Then - (a) . x=(log)_(10)5\ a n d\ y=(log)_(10)2 (b) . x=(log)_(10)2\ a n d\ y=(log)_(10)5 (c) . x=(log)_(10)(1/5)\ a n d\ y=(log)_(10)2 (d) . x=(log)_(10)5\ a n d\ y=(log)_(10)(1/2)