Home
Class 11
MATHS
The sum of all the solutions to the equa...

The sum of all the solutions to the equations `2log_(10)x-log_(10)(2x-75)=2`

A

30

B

350

C

75

D

200

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions of the equation log_(0.5)x=|x| is

Solve the equation log_(3)(5+4log_(3)(x-1))=2

The sum of solution of the equation log_(10)(3x^(2) +12x +19) - log_(10)(3x +4) = 1 is

The number of solutions of the equation log_7(x+2)=log_49(4-x) is :-

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

If x_1and \ x_2 are the solution of the equation x^(3log_10^3x-2/3log_(10)x)=100 root(3)10 then- a. x1x2=1 b. x1*x2=x1+x2 c. log_(x2)x1=-1 d. log(x_1*x_2)=0

Solve the equation log_((log_(5)x))5=2

The real value of x for which the statement 2log_(10)x-log_(10)(2x-75)=2 is

Solve the equation 2x^(log_(4)^(3))+3^(log_(4)^(x)=27

Solve the equation log_(((2+x)/10))7=log_((2/(x+1)))7 .