Home
Class 11
MATHS
The expression (sin8thetacostheta-sin6th...

The expression `(sin8thetacostheta-sin6thetacos3theta)/(cos2thetacostheta-sin3thetasin4theta)` is equals-

A

`tantheta`

B

`tan2theta`

C

`sin2theta`

D

`cos2theta`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Simply (sin75^(@)-sin15^(@))/(cos75^(@)+cos15^(@)) Prove that (a) (sin3A+sinA)SinA+(Cos3A-cosA)cosA=0 (c) (sin8thetacostheta-sin6 thetacos 3 theta)/(cos 2 theta cos theta-sin 3 thetasin4 theta)=tan 2 theta

(sin 5theta+ sin 2theta- sin theta)/(cos5theta+2cos3theta+2cos^2theta+costheta) is equal to

Prove that, costhetacos((theta)/(2))-cos3thetacos((9theta)/(2))=sin7thetasin8theta .

2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) is equal to

The expression (sin(alpha+theta)-"sin"(alpha-theta))/(cos(beta-theta)-cos(beta+theta)) is - independent of alpha b. independent of beta c. independent of theta d. independent of alpha\ a n d\ beta

Show that (1)/( cos theta ) -cos theta =tan theta .sin theta

If sintheta+cosectheta=2 , then sin^(2)theta+cosec^(2)theta is equal to

Let f(theta)=sintheta(sintheta+sin3theta). then f(theta)

cos2thetacos2phi+sin^(2)(theta-phi)-sin^(2)(theta+phi) is equal to

Prove : (2 sin theta cos theta-cos theta)/(1-sin theta+sin^(2) theta-cos^(2) theta)=cot theta