Home
Class 11
MATHS
(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sin...

`(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))` is equal to-

A

tan A

B

`(sinA)/(sinB)`

C

`(cosA)(cosB)`

D

`(sinC)/(cosB)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC , angles A, B, C are in AP. If f(x) = lim_(A to C) (sqrt(3 - 4 sin A sin C))/(|A-C|) , then f'(x) is equal to ..........

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

If A+B+C=pi,\ t h e n\ |"sin"(A+B+C) sinB cosC -sinB 0 tanA "cos"(A+B) -tanA 0| is equal to a. 2sinB tanA cosC b. 1 c. 0 d. none of these

The determinant |{:(sinA,cosA,sinA+cosB),(sinB,cosA,sin+cosB),(sinC,cosA,sinC+cosB):}| is equal to zero

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

Prove that (sin(B-C))/(cos B cos C)+(sin(C-A))/(cos C cos A)+(sin(A-B))/(cos A cos B)=0

int (dx)/(sin(x-a)sin(x-b) = ......+C

If the line x=y=z intersect the line xsinA+ysinB+zsinC-2d^(2)=0=xsin(2A)+ysin(2B)+zsin(2C)-d^(2), where A, B, C are the internal angles of a triangle and "sin"(A)/(2)"sin"(B)/(2)"sin"(C)/(2)=k then the value of 64k is equal to

Prove that, sinA+sinB+sinC-sin(A+B+C)= 4sin((A+B)/(2))sin((B+C)/(2))sin((C+A)/(2))

In DeltaABC,(sinA)/(sinC)=(sin(A-B))/(sin(B-C)) then prove that a^(2),b^(2),c^(2) are in A.P.