Home
Class 11
MATHS
If x=ycos((2pi)/3)=zcos((4pi)/3), then x...

If `x=ycos((2pi)/3)=zcos((4pi)/3)`, then xy+yz+zx=

A

`-1`

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If asintheta=bsin(theta+(2pi)/(3))=csin(theta+(4pi)/(3)) then prove that, ab+bc+ca=0 .

If A=[{:("cos"(2pi)/(3),-"sin"(2pi)/(3)),("sin"(2pi)/(3),"cos"(2pi)/(3)):}] then , A^(3)= …….

f(x)= sin^(2)x + sin^(2) (x + (pi)/(3)) + cos x cos (x + (pi)/(3)) then f'(x) = ………

the value of cos((pi)/(2^2)) . cos((pi)/(2^3)) . cos((pi)/(2^4)) ....... cos((pi)/(2^(10))) sin((pi)/(2^(10))) is

If x+y=(4pi)/(3) and sin x = 2 sin y , then

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

Prove that cos((3pi)/(4)+x)-cos((3pi)/(4)-x)=-sqrt(2)sinx

Prove that, cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2) .

f(x)= sin^(2)x + sin^(2) (x + (pi)/(3)) + cos x cos (x + (pi)/(3)) and g(5 / 4)' =1 then (gof)(x) = ………

If 4sin^(-1)x+3cos^(-1)x=2pi then x = ______