Home
Class 11
MATHS
If f(x)=sin(3x)/sin x,x!=npi, then th...

If `f(x)=sin(3x)/sin x,x!=npi`, then the range of values of f(x) for real values of `x` is

A

`[-1.3]`

B

`[-infty, -1]`

C

`(3,+infty)`

D

`[-1.3]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= |sin x| , then

f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

f(x)=(x^(2)+2x+3)/x . Find the range of f(x).

If f:R -> R, g:R -> R defined as f(x) = sin x and g(x) = x^2 , then find the value of (gof)(x) and (fog)(x) and also prove that gof != fog .

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'(0), is

The maximum value of f(x)=5cos x + 12 sin x is ………..

f(x)= 3x^(2)-1 and g(x)= 3 + x . If f= g then the value of x is…….

If f(x)=x sin x then f'(pi/2) = ……

The minimum value of f(x)=3cos x + 4sin x is ………..

f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x then range of f(x) is ______