Home
Class 11
MATHS
The maximum values of 3 costheta+5sin(th...

The maximum values of `3 costheta+5sin(theta-(pi)/(6))` for any real value of `theta` is:

A

`sqrt(19)`

B

`sqrt(79)/2`

C

`sqrt(31)`

D

`sqrt(34)`

Text Solution

Verified by Experts

1
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of 1+sin(pi/4+theta)+2cos(pi/4-theta) for real values of theta is

For theta in(0,pi/2) , the maximum value of sin(theta+pi/6)+cos(theta+pi/6) is attained at theta =

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

The maximum value of cosec x, x in [(pi)/(6), (pi)/(3)] is ………

Prove that: -4le5costheta+3cos(theta+(pi)/(3))+3le10 , for all values of theta ,

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

If sintheta+costheta=1 , then the value of sin(2theta) is

If sintheta+costheta=1 , then find the general value of theta .

The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

If cos A sin(A-(pi)/6) is maximum , when the value of A is equal to (pi)/(lambda ) , then the value of lambda is