Home
Class 11
MATHS
For non-negative integer n, let f(n) (su...

For non-negative integer n, let f(n) `(sum_(k=0)^(n)sin((k+1)/(k+2)pi)sin((k+2)/(n+2)pi))/(sum_(k=0)^(n)sin^(2)((k+1)/(n+2)pi))`
Assuming `cos^(-1)x` takes values in `[0,pi]`, which of the following options is/are correct?

A

`sin(7cos^(-1)f(5))=0`

B

`f(4)=sqrt(3)/2`

C

`underset(ntoinfty)"lim"f(n)=1/2`

D

If `alpha=tan(cos^(-1)f(6))`, then `alpha^(2)+2alpha-1=0`

Text Solution

Verified by Experts

1,2,4
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Q. The value of is equal sum_(k=1)^13(1/(sin(pi/4+(k-1)pi/6)sin(pi/4+(kpi)/6))) is equal

The positive integer value of n >3 satisfying the equation 1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s

let 0ltphiltpi/2 , x=sum_(n=0)^oocos^(2n)phi , y=sum_(n=0)^oosin^(2n)phi and z=sum_(n=0)^oocos^(2n)phisin^(2n)phi

If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum_(r=1)^(2n-1)2f((r)/(2n)) . Find te value g(4)

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

Definite integration as the limit of a sum : lim_(ntooo)sum_(k=0)^(n)(n)/(n^(2)+k^(2))=..........

Definite integration as the limit of a sum : lim_(ntooo)sum_(K=1)^(n)(K)/(n^(2)+K^(2))=......