Home
Class 11
MATHS
The number of distinct solutions of the ...

The number of distinct solutions of the equation `(5)/(4)cos^2 2x+ cos^(4) x + sin^(4) x + cos^(6) x + sin^(6) x=2 ` in the interval `[0,2pi]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

cos 4x =1- 8 sin ^(2) x cos ^(2) x

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

The number of solutions of the equation cos 4x+6=7 cos 2x , when x in[315^(@),317^(@)] is

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is

cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x-1

Find the number of solution of the equations 2^(cos x)=|sin x|, when x in[-2pi,2pi]

Solve the inequality (5)/4 sin^(2) x + sin^(2) x * cos^(2) gt cos 2x.

The number of solutions of the equation 16^(sin^(2)x)+16^(cos^(2)x)=10,x in[0,3pi] is …………..