Home
Class 11
PHYSICS
Find 1+1/2+1/4+1/8+…. Upto oo....

Find `1+1/2+1/4+1/8+`…. Upto `oo`.

A

`oo`

B

`1`

C

`2`

D

`1.925`

Text Solution

Verified by Experts

The correct Answer is:
C

Here, `a=1, r= (1)/(2)` So, `S_(oo) = (a)/(1-r)= (1)/(1-(1)/(2))= 2`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN |Exercise BEGINNER S BOX 1|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN |Exercise BEGINNER S BOX 2|3 Videos
  • CENTRE OF MASS

    ALLEN |Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Find 1-(1)/(2) + (1)/(4) + (1)/(8) + (1)/(16) - (1)/(32) + .......... oo

Find 1+(1)/(2)+(1)/(4)+(1)/(8)+(1)/(16)+(1)/(32)+......oo

Find sum: (1)/(2) + (1)/(3^(2)) + (1)/(2^(3)) + (1)/(3^(4)) + (1)/(2^(5)) + (1)/(3^(6))+ …..oo

Prove the following by the principle of mathematical induction: 1/(2. 5)+1/(5. 8)+1/(8. 11)++1/((3n-1)(3n+2))=n/(6n+4)

Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+tan^-1 (1/(x^2+3x+3))+tan^-1(1/(x^2+5X+7))+tan^-1(1/x^2+7x+13)) ......upto n.

Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

Mass particles of 1 kg each are placed along x-axus at x=1, 2, 4, 8, .... oo . Then gravitational force o a mass of 3 kg placed at origin is (G= universal gravitation constant) :-

1,2,4,8,16,"…."

Find the sum of series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^2+5((2n+1)/(2n-1))^3+...

Solution set of the inequality sin^(-1)(sin((2x^2+3)/(x^2+1)))lt=pi-5/2 is- a. (-oo,\ 1)uu(1,\ oo) b. [-1,\ 1] c. (-1,\ 1)\ d. (-oo,-1]uu[1,\ oo)