Home
Class 11
PHYSICS
In a parallelogram ABCD. Prove that vec(...

In a parallelogram ABCD. Prove that `vec(AC)+ vec (BD) = 2 vec(BC)`

Text Solution

Verified by Experts

`vec (AC) = vec(AB) +vec (BC) & vec (BD) + vec (CD)` [applying triangle law of vectors]
Now `vec(AC) + vec(BD) = vec(AB) + vec (BC) + vec(BC) + vec(CD) = vec(AB) + 2vec(BC) + vec(CD)`
But `vec(CD) =-vec(AB)` `" "therefore vec(AC) + vec(BD) = vec(AB) + 2 vec(BC) - vec(AB) = 2vec(BC)`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN |Exercise BEGINNER S BOX 1|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN |Exercise BEGINNER S BOX 2|3 Videos
  • CENTRE OF MASS

    ALLEN |Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

In a parallelogram ABCD, vec(AB)=hati+hatj+hatk and diagonal vec(AC)=hati-hatj+hatk then angleBAC = …………….

If vec(a)=2hati+hatj+x hatk and vec(b)=hati+hatj-hatk then the minimum area of a parallelogram formed by the vectors vec(a) and vec(b) is ………….

In a quadrilateral ABCD, vec(AB)=vec(b),vec(AD)=vec(d) and vec(AC)=m vec(b)+p vec(d)(m+p ge1) . The area of the quadrilateral ABCD is ……………..

If A, B, C and D by any four points in space, prove that |vec(AB)xx vec(CD)+vec(BC)xx vec(AD)+vec(CA)xx vec(BD)|=4 (Area of triangle ABC)

vec(a) and vec(b) are any two vectors. Prove that |vec(a)+vec(b)|le|vec(a)|+|vec(b)|

In a regular hexagon ABCDEF, vec(AB) +vec(AC)+vec(AD)+ vec(AE) + vec(AF)=k vec(AD) then k is equal to

In a regular hexagon ABCDEF, vec(AB)=a, vec(BC)=b and vec(CD) = c. Then, vec(AE) =

The position vectors of the points A, B, C are vec(a),vec(b) and vec( c ) respectively. If the points A, B, C are collinear then prove that vec(a)xx vec(b)+vec(b)xx vec( c )+vec( c )xxvec(a)=vec(0) .

In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

If vec(x),vec(y) and vec(z) are non coplanar then prove that vec(x)+vec(y),vec(y)+vec(z) and vec(z)+vec(x) are non coplanar.