`{:("Electrolyte",^^.^(oo)(Scm^(2)mol^(-1))),(KCl,149.9),(KNO_(3),145.0),(HCl,426.2),(NaOAc,91.0),(NaCl,126.5):}`
Calculate `^^_(HOAc)^(oo)` using appropriate molar conductance of the electrolytes listed above at infinite dilution in `H_(2)O` at `25^(@)C`
`{:("Electrolyte",^^.^(oo)(Scm^(2)mol^(-1))),(KCl,149.9),(KNO_(3),145.0),(HCl,426.2),(NaOAc,91.0),(NaCl,126.5):}`
Calculate `^^_(HOAc)^(oo)` using appropriate molar conductance of the electrolytes listed above at infinite dilution in `H_(2)O` at `25^(@)C`
Calculate `^^_(HOAc)^(oo)` using appropriate molar conductance of the electrolytes listed above at infinite dilution in `H_(2)O` at `25^(@)C`
A
` 517. 2 `
B
`552.7`
C
` 390.7 `
D
`217.5 `
Text Solution
AI Generated Solution
The correct Answer is:
To calculate the molar conductance of acetic acid (HOAc) at infinite dilution (\( \Lambda^\infty_{HOAc} \)), we will use the molar conductance values of the given electrolytes at infinite dilution. The molar conductance of a weak electrolyte like acetic acid can be expressed in terms of its ions.
### Step-by-Step Solution:
1. **Identify the Molar Conductance of Given Electrolytes**:
- KCl: \( \Lambda^\infty_{KCl} = 149.9 \, \text{S cm}^2 \text{mol}^{-1} \)
- KNO₃: \( \Lambda^\infty_{KNO3} = 145.0 \, \text{S cm}^2 \text{mol}^{-1} \)
- HCl: \( \Lambda^\infty_{HCl} = 426.2 \, \text{S cm}^2 \text{mol}^{-1} \)
- NaOAc: \( \Lambda^\infty_{NaOAc} = 91.0 \, \text{S cm}^2 \text{mol}^{-1} \)
- NaCl: \( \Lambda^\infty_{NaCl} = 126.5 \, \text{S cm}^2 \text{mol}^{-1} \)
2. **Write the Molar Conductance Equations**:
- For KCl:
\[
\Lambda^\infty_{KCl} = \Lambda^\infty_{K^+} + \Lambda^\infty_{Cl^-}
\]
- For KNO₃:
\[
\Lambda^\infty_{KNO3} = \Lambda^\infty_{K^+} + \Lambda^\infty_{NO_3^-}
\]
- For HCl:
\[
\Lambda^\infty_{HCl} = \Lambda^\infty_{H^+} + \Lambda^\infty_{Cl^-}
\]
- For NaOAc:
\[
\Lambda^\infty_{NaOAc} = \Lambda^\infty_{Na^+} + \Lambda^\infty_{OAc^-}
\]
- For NaCl:
\[
\Lambda^\infty_{NaCl} = \Lambda^\infty_{Na^+} + \Lambda^\infty_{Cl^-}
\]
3. **Express \( \Lambda^\infty_{HOAc} \)**:
- The molar conductance of acetic acid can be expressed as:
\[
\Lambda^\infty_{HOAc} = \Lambda^\infty_{H^+} + \Lambda^\infty_{OAc^-}
\]
4. **Substitute Known Values**:
- From the equations, we can isolate \( \Lambda^\infty_{H^+} \) and \( \Lambda^\infty_{OAc^-} \):
- From HCl:
\[
\Lambda^\infty_{H^+} = \Lambda^\infty_{HCl} - \Lambda^\infty_{Cl^-} = 426.2 - \Lambda^\infty_{Cl^-}
\]
- From NaCl:
\[
\Lambda^\infty_{Na^+} + \Lambda^\infty_{Cl^-} = 126.5
\]
- From NaOAc:
\[
\Lambda^\infty_{Na^+} + \Lambda^\infty_{OAc^-} = 91.0
\]
5. **Solve for \( \Lambda^\infty_{OAc^-} \)**:
- Now, we can substitute \( \Lambda^\infty_{Na^+} \) from the NaCl equation into the NaOAc equation:
\[
(126.5 - \Lambda^\infty_{Cl^-}) + \Lambda^\infty_{OAc^-} = 91.0
\]
- Rearranging gives:
\[
\Lambda^\infty_{OAc^-} = 91.0 - (126.5 - \Lambda^\infty_{Cl^-})
\]
- Simplifying yields:
\[
\Lambda^\infty_{OAc^-} = \Lambda^\infty_{Cl^-} - 35.5
\]
6. **Substituting Back**:
- Substitute \( \Lambda^\infty_{OAc^-} \) back into the equation for \( \Lambda^\infty_{HOAc} \):
\[
\Lambda^\infty_{HOAc} = \Lambda^\infty_{H^+} + \Lambda^\infty_{OAc^-}
\]
- We can now express \( \Lambda^\infty_{HOAc} \) in terms of known values.
7. **Final Calculation**:
- After substituting and simplifying the equations, we find:
\[
\Lambda^\infty_{HOAc} = 390.7 \, \text{S cm}^2 \text{mol}^{-1}
\]
### Final Answer:
\[
\Lambda^\infty_{HOAc} = 390.7 \, \text{S cm}^2 \text{mol}^{-1}
\]
To calculate the molar conductance of acetic acid (HOAc) at infinite dilution (\( \Lambda^\infty_{HOAc} \)), we will use the molar conductance values of the given electrolytes at infinite dilution. The molar conductance of a weak electrolyte like acetic acid can be expressed in terms of its ions.
### Step-by-Step Solution:
1. **Identify the Molar Conductance of Given Electrolytes**:
- KCl: \( \Lambda^\infty_{KCl} = 149.9 \, \text{S cm}^2 \text{mol}^{-1} \)
- KNO₃: \( \Lambda^\infty_{KNO3} = 145.0 \, \text{S cm}^2 \text{mol}^{-1} \)
- HCl: \( \Lambda^\infty_{HCl} = 426.2 \, \text{S cm}^2 \text{mol}^{-1} \)
...
Similar Questions
Explore conceptually related problems
Calculate (A_(HOAC)^(@)) using appropriate molar conductances of the electrolytes listed above at infinite dilution in H_(2)O at 25^(@)C .
Calculate, molar conductance of acetic acid using appropriate molar conductances of the electrolytes listed above at infinite dilution in H_(2)O at 25^(@)C :
For strong electrolytes the values of molar conductivities at infinite dilution are given below {:("Electrolyte",^^_(m)^(@) (Sm^(2 mol^(-1))),(BaCl_(2),280 xx 10^(-4)),(NaCl,126.5 xx 10^(-4)), (NaOH,48 xx 10^(-4)):} The molar conductance at infinite dilution for Ba(OH)_(2) is
1.0 molal aqueous solution of an electrolyte X_(3)Y_(2) is 25% ionized. The boiling point of the solution is (K_(b) for H_(2)O = 0.52 K kg//mol) :
0.1 molal aqueous solution of an electrolyte AB_(3) is 90% ionised. The boiling point of the solution at 1 atm is ( K_(b(H_(2)O)) = 0.52 kg " mol"^(-1) )
At 0.04 M concentration the molar conductivity of a solution of a electrolyte is 5000Omega^(-1)cm^(2)mol^(-1) while at 0.01 M concentration the value is 5100Omega^(-1)cm^(2)mol^(-1) making necessary assumption (taking it as strong electrolyte) find the molar conductivity at infinite dilution and also determine the degree of dissociation of strong electrolyte at 0.04M.
At 0.04 M concentration, the molar conductivity of solution of an electrolyte is 5000 Omega^(-1)cm^(2) mol^(-1) while at 0.01 M concentration the value is 5100 Omega^(-1)cm^(2)mol^(-1) . Making necessary assumption (Taking it as strong electrolyte) find the molar conductivity at infinite dilution and write percentage dissociation of strong electrolyte at 0.04 M.
The molar conductance of NaCl varies with the concentration as shown in the following table and all values follows the equation lambda_m^( C)=lambda_m^(oo)-bsqrtC where lambda_(m)^( C) =molar specific conductance lambda_(m)^(oo) =molar specific conductance at infinite dilution C=molar concentration {:("Molar Concentration of NaCl","Molar Conductance" "In" "ohm"^(-1)cm^(2)"mole"^(-1)),(4xx10^(-4),107),(9xx10^(-4),97),(16xx10^(-4),87):} When a certain conductivity cell (C) was filled with 25xx10^(-4) (M) NaCl solution.The resistance of the cell was found to be 1000 ohm.At Infinite dilution, conductance of Cl^(-) and SO_4^(-2) are 80 ohm^(-1) cm^(2) "mole"^(-1) and 160 ohm^(-1) cm^2 "mole"^(-1) respectively. If the cell ( C) is filled with 5xx10^(-3)(N)Na_(2)SO_(4) the obserbed resistance was 400 ohm.What is the molar conductance of Na_(2)SO_(4) .
The conductivity of 0.001 M acetic is 4 xx 10^(-5)S//cm. Calculate the dissociation constant of acetic acid, if molar conductivity at infinite dilution for acetic is 390 S cm^(2)//mol.
The molar ionic conductance at infinite dilution of K^(+) and SO_(4)^(2-) are 73.5 and 160 Scm^(2)mol^(-1) respectively.The molar conductance of solution of K_(2)SO_(4) at infinite dilution will be
Recommended Questions
- {:("Electrolyte",^^.^(oo)(Scm^(2)mol^(-1))),(KCl,149.9),(KNO(3),145.0)...
Text Solution
|
- {:("Electrolyte",^^.^(oo)(Scm^(2)mol^(-1))),(KCI,149.9),(KNO(3),145.0)...
Text Solution
|
- Calculate ^^overset(oo)HOAc using appropriate molar conductances of th...
Text Solution
|
- {:("Electrolyte:",KCl,KNO(3),HCl,NaOAc,NaCl),(wedge^(oo)(Scm^(2)mol^(-...
Text Solution
|
- The molar conductivities Lambda(NaOAc)^@ and Lambda(HCI)^@ at infinite...
Text Solution
|
- |{:("Electolyte",KCl,KNO(3),HCl,NaOAc,NaCl),(underset(("S.cm"^(2)."mol...
Text Solution
|
- At 25^(@) C, at infinite dilution, the molar conductivity of HCl, NaCl...
Text Solution
|
- The molar conductivities of wedge(NaOAc)^(@) and wedge(HCl)^(@) at inf...
Text Solution
|
- Calculate Lambda(HO Ac)^(oo) using appropriate molar conductances of t...
Text Solution
|