To find the pH of the resultant solution when 50 mL of 0.1 M NH3 is mixed with 10 mL of 0.1 M HCl, we can follow these steps:
### Step 1: Calculate the moles of NH3 and HCl
- **Moles of NH3**:
\[
\text{Moles of NH3} = \text{Molarity} \times \text{Volume} = 0.1 \, \text{mol/L} \times 0.050 \, \text{L} = 0.005 \, \text{mol} = 5 \, \text{mmol}
\]
- **Moles of HCl**:
\[
\text{Moles of HCl} = \text{Molarity} \times \text{Volume} = 0.1 \, \text{mol/L} \times 0.010 \, \text{L} = 0.001 \, \text{mol} = 1 \, \text{mmol}
\]
### Step 2: Determine the reaction and the moles after the reaction
The reaction between NH3 and HCl can be represented as:
\[
\text{NH}_3 + \text{HCl} \rightarrow \text{NH}_4^+ + \text{Cl}^-
\]
- **Initial moles**:
- NH3: 5 mmol
- HCl: 1 mmol
- NH4Cl (produced): 0 mmol
- **Final moles after reaction**:
- NH3: \(5 - 1 = 4 \, \text{mmol}\)
- HCl: \(1 - 1 = 0 \, \text{mmol}\)
- NH4Cl: \(0 + 1 = 1 \, \text{mmol}\)
### Step 3: Calculate the concentrations of NH3 and NH4Cl in the final solution
- **Total volume of the solution**:
\[
50 \, \text{mL} + 10 \, \text{mL} = 60 \, \text{mL} = 0.060 \, \text{L}
\]
- **Concentration of NH3**:
\[
[\text{NH}_3] = \frac{4 \, \text{mmol}}{60 \, \text{mL}} = \frac{4 \times 10^{-3} \, \text{mol}}{0.060 \, \text{L}} = 0.0667 \, \text{M}
\]
- **Concentration of NH4Cl**:
\[
[\text{NH}_4^+] = \frac{1 \, \text{mmol}}{60 \, \text{mL}} = \frac{1 \times 10^{-3} \, \text{mol}}{0.060 \, \text{L}} = 0.0167 \, \text{M}
\]
### Step 4: Calculate the pOH using the Henderson-Hasselbalch equation
Using the formula:
\[
\text{pOH} = \text{pK}_a + \log\left(\frac{[\text{NH}_4^+]}{[\text{NH}_3]}\right)
\]
First, we need to find pKa from pKb:
\[
\text{pK}_a + \text{pK}_b = 14 \implies \text{pK}_a = 14 - 4.75 = 9.25
\]
Now substituting the values:
\[
\text{pOH} = 9.25 + \log\left(\frac{0.0167}{0.0667}\right)
\]
Calculating the log term:
\[
\log\left(\frac{0.0167}{0.0667}\right) \approx \log(0.25) \approx -0.602
\]
Thus:
\[
\text{pOH} = 9.25 - 0.602 \approx 8.648
\]
### Step 5: Calculate the pH
Using the relation:
\[
\text{pH} + \text{pOH} = 14
\]
We find:
\[
\text{pH} = 14 - 8.648 \approx 5.352
\]
### Final Answer
The pH of the resultant solution is approximately **5.35**.