Home
Class 12
PHYSICS
A proton is projected with velocity vecV...

A proton is projected with velocity `vecV=2hati` in a regionn where magnetic field `vecB=(hati+3hatj+4hatk)muT` and electric field `vecE=10hatimuV//m`. Then find out the net acceleration of proton:

A

`1400m//s^(2)`

B

`700m//s^(2)`

C

`1000m//s^(2)`

D

`800m//s^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the net acceleration of a proton projected with a given velocity in the presence of electric and magnetic fields. We will use the Lorentz force equation to calculate the force acting on the proton and then use Newton's second law to find the acceleration. ### Step-by-Step Solution: 1. **Identify Given Values:** - Velocity of the proton: \(\vec{V} = 2 \hat{i} \, \text{m/s}\) - Magnetic field: \(\vec{B} = \hat{i} + 3 \hat{j} + 4 \hat{k} \, \mu T = (1 \hat{i} + 3 \hat{j} + 4 \hat{k}) \times 10^{-6} \, T\) - Electric field: \(\vec{E} = 10 \hat{i} \, \mu V/m = 10 \times 10^{-6} \hat{i} \, V/m\) - Charge of the proton: \(q = 1.6 \times 10^{-19} \, C\) - Mass of the proton: \(m = 1.6 \times 10^{-27} \, kg\) 2. **Calculate the Electric Force (\(\vec{F_E}\)):** \[ \vec{F_E} = q \vec{E} = (1.6 \times 10^{-19} \, C)(10 \times 10^{-6} \hat{i}) = 1.6 \times 10^{-24} \hat{i} \, N \] 3. **Calculate the Magnetic Force (\(\vec{F_B}\)):** The magnetic force is given by the formula: \[ \vec{F_B} = q (\vec{V} \times \vec{B}) \] First, we need to calculate the cross product \(\vec{V} \times \vec{B}\): \[ \vec{V} = 2 \hat{i} \] \[ \vec{B} = (1 \hat{i} + 3 \hat{j} + 4 \hat{k}) \times 10^{-6} \] Using the determinant to calculate the cross product: \[ \vec{V} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 1 \times 10^{-6} & 3 \times 10^{-6} & 4 \times 10^{-6} \end{vmatrix} \] This expands to: \[ = \hat{i}(0 \cdot 4 \times 10^{-6} - 0 \cdot 3 \times 10^{-6}) - \hat{j}(2 \cdot 4 \times 10^{-6} - 0) + \hat{k}(2 \cdot 3 \times 10^{-6} - 0) \] \[ = 0 \hat{i} - 8 \times 10^{-6} \hat{j} + 6 \times 10^{-6} \hat{k} \] Therefore: \[ \vec{V} \times \vec{B} = (0 \hat{i} - 8 \hat{j} + 6 \hat{k}) \times 10^{-6} \] Now, substituting into the magnetic force: \[ \vec{F_B} = q \cdot (0 \hat{i} - 8 \hat{j} + 6 \hat{k}) \times 10^{-6} \] \[ \vec{F_B} = (1.6 \times 10^{-19}) \cdot (0 \hat{i} - 8 \hat{j} + 6 \hat{k}) \times 10^{-6} \] \[ = (0 \hat{i} - 12.8 \times 10^{-25} \hat{j} + 9.6 \times 10^{-25} \hat{k}) \, N \] 4. **Calculate the Total Force (\(\vec{F}\)):** \[ \vec{F} = \vec{F_E} + \vec{F_B} \] \[ \vec{F} = (1.6 \times 10^{-24} \hat{i}) + (0 \hat{i} - 12.8 \times 10^{-25} \hat{j} + 9.6 \times 10^{-25} \hat{k}) \] \[ = (1.6 \times 10^{-24} \hat{i} - 12.8 \times 10^{-25} \hat{j} + 9.6 \times 10^{-25} \hat{k}) \, N \] 5. **Calculate the Acceleration (\(\vec{a}\)):** Using Newton's second law: \[ \vec{a} = \frac{\vec{F}}{m} \] \[ \vec{a} = \frac{(1.6 \times 10^{-24} \hat{i} - 12.8 \times 10^{-25} \hat{j} + 9.6 \times 10^{-25} \hat{k})}{1.6 \times 10^{-27}} \] \[ = (1000 \hat{i} - 800 \hat{j} + 600 \hat{k}) \, m/s^2 \] 6. **Magnitude of the Acceleration:** \[ |\vec{a}| = \sqrt{(1000)^2 + (-800)^2 + (600)^2} \] \[ = \sqrt{1000000 + 640000 + 360000} = \sqrt{2000000} \approx 1414.21 \, m/s^2 \] ### Final Answer: The net acceleration of the proton is approximately \(1414.21 \, m/s^2\).

To solve the problem, we need to find the net acceleration of a proton projected with a given velocity in the presence of electric and magnetic fields. We will use the Lorentz force equation to calculate the force acting on the proton and then use Newton's second law to find the acceleration. ### Step-by-Step Solution: 1. **Identify Given Values:** - Velocity of the proton: \(\vec{V} = 2 \hat{i} \, \text{m/s}\) - Magnetic field: \(\vec{B} = \hat{i} + 3 \hat{j} + 4 \hat{k} \, \mu T = (1 \hat{i} + 3 \hat{j} + 4 \hat{k}) \times 10^{-6} \, T\) - Electric field: \(\vec{E} = 10 \hat{i} \, \mu V/m = 10 \times 10^{-6} \hat{i} \, V/m\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

A charged particle has acceleration veca=2hati+xhatj in a magnetic field vecB=-3hati+2hatj-4hatk .Find the value of x .

An electron projectes with velocity vecv=v_(0)hati in the electric field vecE=E_(0)hatj . There the path followed by the electron E_(0) .

An electron is moving with an initial velocity vecv=v_(0)hati and is in a magnetic field vecB=B_(0)hatj . Then it's de-Broglie wavelength

An electron is moving with an initial velocity vecv=v_(0)hati and is in a magnetic field vecB=B_(0)hatj . Then it's de-Broglie wavelength

The projection of the vector vecA = hati - 2hatj + hatk on the vector vecB = 4hati - 4hatj + 7hatk is

If vecu = 2hati - 2hatj + 3hatk and the final velocity is vecv = 2hati - 4hatj + 5hatk and it is covered in a time of 10 sec, find the acceleration vector.

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|

An electric charge +q moves with velocity vecv=3hati+4hatj+hatk ,in an electromagnetic field given by: vecE=3hati+hatj+2hatk and vecB=hati+hatj+3hatk .The y -component of the force experienced by +q is:

Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

Find the projection oif veca=2hati+3hatj+2hatk on the vector vecb=hati+2hatj+hatk .