Home
Class 14
MATHS
The value of [(1)/(1xx2)+(1)/(2xx 3)+(1)...

The value of `[(1)/(1xx2)+(1)/(2xx 3)+(1)/(3xx4)+"…………"+(1)/(49xx50)]` will be

A

`(49)/(50)`

B

`(1)/(5000)`

C

`(51)/(50)`

D

`(101)/(500)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \(\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{49 \times 50}\), we can use a technique involving partial fractions. ### Step-by-Step Solution: 1. **Rewrite Each Term**: Each term in the series can be rewritten using the identity: \[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \] Therefore, we can express the series as: \[ \frac{1}{1 \times 2} = 1 - \frac{1}{2}, \quad \frac{1}{2 \times 3} = \frac{1}{2} - \frac{1}{3}, \quad \frac{1}{3 \times 4} = \frac{1}{3} - \frac{1}{4}, \ldots, \frac{1}{49 \times 50} = \frac{1}{49} - \frac{1}{50} \] 2. **Write the Full Series**: The entire series can now be written as: \[ \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \ldots + \left(\frac{1}{49} - \frac{1}{50}\right) \] 3. **Observe the Cancellation**: When we add these terms together, we notice that most terms will cancel out: \[ 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \ldots - \frac{1}{50} \] All intermediate terms cancel, leaving us with: \[ 1 - \frac{1}{50} \] 4. **Simplify the Result**: Now, we can simplify the remaining expression: \[ 1 - \frac{1}{50} = \frac{50}{50} - \frac{1}{50} = \frac{49}{50} \] ### Final Answer: The value of the given series is: \[ \frac{49}{50} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+..... +(1)/(99xx100) is

The value of 1000[(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+cdots+(1)/(999xx1000)] is equal to

[(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+,+(1)/(99xx100)]=

The simplest value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+backslash+(1)/(9xx10) is (1)/(10) (b) (9)/(10) (c) 1 (d) 10

The value of 1/2div1/4 xx 1/3 is

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

The value of 1+(1)/(4xx3)+(1)/(4xx3^(2))+(1)/(4xx3^(3)) is (121)/(108)(b)(3)/(2)(c)(31)/(2) (d) None of these

The value of 3xx 9^(-3//2) xx 9^(1//2) is

Find the value of (1)/(2xx3)+(1)/(3xx4)+(1)/(4xx5)+(1)/(5xx6)+backslash+(1)/(9xx10)