Home
Class 14
MATHS
If a^2+b^2=45 and ab=18, then the value ...

If `a^2+b^2=45` and `ab=18`, then the value of `(1)/(a)+(1)/(b)` is

A

`(5)/(7)`

B

`(7)/(8)`

C

`+-1/2`

D

`+-1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{a} + \frac{1}{b} \) given that \( a^2 + b^2 = 45 \) and \( ab = 18 \). ### Step 1: Use the identity for \( a^2 + b^2 \) We know the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting the known values into this identity: \[ 45 = (a + b)^2 - 2 \cdot 18 \] ### Step 2: Simplify the equation Now, simplify the equation: \[ 45 = (a + b)^2 - 36 \] Adding 36 to both sides gives: \[ 45 + 36 = (a + b)^2 \] \[ 81 = (a + b)^2 \] ### Step 3: Take the square root Taking the square root of both sides, we find: \[ a + b = 9 \quad \text{or} \quad a + b = -9 \] Since we are looking for positive values of \( a \) and \( b \), we will take \( a + b = 9 \). ### Step 4: Find \( \frac{1}{a} + \frac{1}{b} \) We can express \( \frac{1}{a} + \frac{1}{b} \) in terms of \( a + b \) and \( ab \): \[ \frac{1}{a} + \frac{1}{b} = \frac{a + b}{ab} \] Substituting the values we have: \[ \frac{1}{a} + \frac{1}{b} = \frac{9}{18} \] ### Step 5: Simplify the fraction Now, simplify the fraction: \[ \frac{9}{18} = \frac{1}{2} \] ### Final Answer Thus, the value of \( \frac{1}{a} + \frac{1}{b} \) is \( \frac{1}{2} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b=5 and a-b=1 then find the value of 8ab(a^2+b^2)

If a - b = 5 and a^(2)+b^(2)=45 then the value of ab is:

If a, b are two real number satisfying the relation 2a^(2) - 3a - 1 = 0 and b^(2) + 3b - 2 = 0 and ab ne 1 , then value of (ab + a+ 1)/(b) is

If ab + bc + ca = 0 , then the value of 1/(a^2 - bc) + 1/(b^2 - ca) + 1/(c^2 - ab) will be :