Home
Class 14
MATHS
The value of {((1)/(3))^(-1) - ((1)/(4))...

The value of `{((1)/(3))^(-1) - ((1)/(4))^(-1)}` will be

A

` - 1 `

B

1

C

0

D

`(3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1}\), we can follow these steps: ### Step 1: Apply the property of negative exponents Recall that \(a^{-1} = \frac{1}{a}\). Therefore, we can rewrite the expression as: \[ \left(\frac{1}{3}\right)^{-1} = 3 \quad \text{and} \quad \left(\frac{1}{4}\right)^{-1} = 4 \] ### Step 2: Substitute back into the expression Now substitute these values back into the expression: \[ 3 - 4 \] ### Step 3: Perform the subtraction Now, perform the subtraction: \[ 3 - 4 = -1 \] ### Final Answer Thus, the value of the expression \(\left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1}\) is \(-1\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 5-(2(1)/2-3/4)+(3(1)/2-1(1)/4)

The value of (7^(-1)-8^(-1))^(-1)-(3^(-1)-4^(-1))^(-1) is

The value of [(1)/(3)]^(-1)-((1)/(4))^(-7)}+[((1)/(4))^(-1)-((1)/(5))^(-1)]+[((1)/(5))^(-1)-((1)/(6))^(-1)]^(2)] is

the value of 4-(5)/(1+(5)/(3+(1)/(2(1)/(4)))) is

Find the values of - ((1)/(2))^(-1)+((1)/(3))^(-1)+((1)/(4))^(-1)

Find the value of (1/2)^(-1)+(1/3)^(-1)+(1/4)^(-2)

The value of cos((1)/(2)cos^(-1)((1)/(8))) is (a) (3)/(4) (b) -(3)/(4)( c) (1)/(16)(d)(1)/(4)