Home
Class 14
MATHS
If (1)/(a):(1)/(b):(1)/(c ) =4:6:10 then...

If `(1)/(a):(1)/(b):(1)/(c )` =4:6:10 then the value of a:b:c is

A

`10:6:7`

B

`7:6:4`

C

`11:10:12`

D

`15:10:6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratio: \[ \frac{1}{a} : \frac{1}{b} : \frac{1}{c} = 4 : 6 : 10 \] ### Step 1: Simplify the Ratio First, we simplify the ratio \(4 : 6 : 10\) by dividing each term by 2: \[ \frac{1}{a} : \frac{1}{b} : \frac{1}{c} = 2 : 3 : 5 \] ### Step 2: Assign Variables Let’s assign variables to each part of the ratio: \[ \frac{1}{a} = 2x, \quad \frac{1}{b} = 3x, \quad \frac{1}{c} = 5x \] ### Step 3: Express \(a\), \(b\), and \(c\) Now, we can express \(a\), \(b\), and \(c\) in terms of \(x\): \[ a = \frac{1}{2x}, \quad b = \frac{1}{3x}, \quad c = \frac{1}{5x} \] ### Step 4: Find the Ratio \(a : b : c\) Now we need to find the ratio \(a : b : c\): \[ a : b : c = \frac{1}{2x} : \frac{1}{3x} : \frac{1}{5x} \] ### Step 5: Eliminate \(x\) Since \(x\) is common in all terms, we can eliminate it: \[ a : b : c = \frac{1}{2} : \frac{1}{3} : \frac{1}{5} \] ### Step 6: Convert to a Common Denominator To express this ratio in a simpler form, we can find the least common multiple (LCM) of the denominators 2, 3, and 5, which is 30. Now we multiply each term by 30: \[ a : b : c = 30 \cdot \frac{1}{2} : 30 \cdot \frac{1}{3} : 30 \cdot \frac{1}{5} \] This simplifies to: \[ a : b : c = 15 : 10 : 6 \] ### Conclusion Thus, the final ratio \(a : b : c\) is: \[ \boxed{15 : 10 : 6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are positive integers satisfying (a)/(b+c)+(b)/(c+a)+(c)/(a+b)=(3)/(2) hen the value of abc+(1)/(abc)

(1)/(3)A=(1)/(4)B=(1)/(5)C, then A:B:C is

If a,b,c are distinct real numbers such that a+(1)/(b)=b+(1)/(c )=c+(1)/(a) , then evaluate abc.

If a, b, c, are non - zero a +1/b =1 and b + 1/c =1 , then the value of abc is :