Home
Class 14
MATHS
The value of 1/(sqrt2+sqrt3)+1/(sqrt3+...

The value of
`1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)` will be

A

`sqrt3(1+sqrt2)`

B

`sqrt2(sqrt3+1)`

C

`sqrt3(sqrt2-1)`

D

`sqrt2(sqrt3-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} \), we will rationalize each term in the sum. ### Step-by-Step Solution: 1. **First Term: Rationalize \( \frac{1}{\sqrt{2}+\sqrt{3}} \)** Multiply the numerator and denominator by \( \sqrt{3} - \sqrt{2} \): \[ \frac{1}{\sqrt{2}+\sqrt{3}} \cdot \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})} \] The denominator simplifies to: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] Thus, the first term becomes: \[ \sqrt{3} - \sqrt{2} \] 2. **Second Term: Rationalize \( \frac{1}{\sqrt{3}+\sqrt{4}} \)** Multiply the numerator and denominator by \( \sqrt{4} - \sqrt{3} \): \[ \frac{1}{\sqrt{3}+\sqrt{4}} \cdot \frac{\sqrt{4}-\sqrt{3}}{\sqrt{4}-\sqrt{3}} = \frac{\sqrt{4}-\sqrt{3}}{(\sqrt{3}+\sqrt{4})(\sqrt{4}-\sqrt{3})} \] The denominator simplifies to: \[ (\sqrt{4})^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] Thus, the second term becomes: \[ 2 - \sqrt{3} \] 3. **Third Term: Rationalize \( \frac{1}{\sqrt{4}+\sqrt{5}} \)** Multiply the numerator and denominator by \( \sqrt{5} - \sqrt{4} \): \[ \frac{1}{\sqrt{4}+\sqrt{5}} \cdot \frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}-\sqrt{4}} = \frac{\sqrt{5}-\sqrt{4}}{(\sqrt{4}+\sqrt{5})(\sqrt{5}-\sqrt{4})} \] The denominator simplifies to: \[ (\sqrt{5})^2 - (\sqrt{4})^2 = 5 - 4 = 1 \] Thus, the third term becomes: \[ \sqrt{5} - 2 \] 4. **Fourth Term: Rationalize \( \frac{1}{\sqrt{5}+\sqrt{6}} \)** Multiply the numerator and denominator by \( \sqrt{6} - \sqrt{5} \): \[ \frac{1}{\sqrt{5}+\sqrt{6}} \cdot \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}} = \frac{\sqrt{6}-\sqrt{5}}{(\sqrt{5}+\sqrt{6})(\sqrt{6}-\sqrt{5})} \] The denominator simplifies to: \[ (\sqrt{6})^2 - (\sqrt{5})^2 = 6 - 5 = 1 \] Thus, the fourth term becomes: \[ \sqrt{6} - \sqrt{5} \] 5. **Combine All Terms:** Now, we can combine all the rationalized terms: \[ (\sqrt{3} - \sqrt{2}) + (2 - \sqrt{3}) + (\sqrt{5} - 2) + (\sqrt{6} - \sqrt{5}) \] Simplifying this: - The \( \sqrt{3} \) terms cancel: \( \sqrt{3} - \sqrt{3} = 0 \) - The \( 2 \) terms cancel: \( 2 - 2 = 0 \) - The \( \sqrt{5} \) terms cancel: \( \sqrt{5} - \sqrt{5} = 0 \) What remains is: \[ -\sqrt{2} + \sqrt{6} \] 6. **Final Result:** The final value is: \[ \sqrt{6} - \sqrt{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99) is

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)

The value of [1/(sqrt9-sqrt8)]-[1/(sqrt8-sqrt7)]+[1/(sqrt7-sqrt6)]-[1/(sqrt6-sqrt5)]+[1/(sqrt5-sqrt4)] is A)6 B)5 C)-7 D)-6

The value of 1/(sqrt5-sqrt(5-sqrt(24)))+1/(sqrt5-sqrt(5+sqrt(24))

1/(sqrt5 +sqrt3 +2) + 1/(-sqrt5 +sqrt3 +2 ) =

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?