Home
Class 14
MATHS
What is the ones ( or unit ) digit in 23...

What is the ones ( or unit ) digit in `23^(23) - 17^(17)` ?

A

0

B

2

C

3

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit digit of \( 23^{23} - 17^{17} \), we can follow these steps: ### Step 1: Find the unit digit of \( 23^{23} \) 1. **Identify the unit digit of the base**: The unit digit of \( 23 \) is \( 3 \). 2. **Determine the cycle of unit digits for powers of \( 3 \)**: - \( 3^1 = 3 \) (unit digit is \( 3 \)) - \( 3^2 = 9 \) (unit digit is \( 9 \)) - \( 3^3 = 27 \) (unit digit is \( 7 \)) - \( 3^4 = 81 \) (unit digit is \( 1 \)) - The cycle repeats every 4: \( 3, 9, 7, 1 \). 3. **Find the exponent modulo 4**: - Calculate \( 23 \mod 4 \): \[ 23 \div 4 = 5 \quad \text{(remainder } 3\text{)} \] - So, \( 23 \mod 4 = 3 \). 4. **Use the cycle to find the unit digit**: - The third position in the cycle \( (3, 9, 7, 1) \) corresponds to \( 7 \). - Therefore, the unit digit of \( 23^{23} \) is \( 7 \). ### Step 2: Find the unit digit of \( 17^{17} \) 1. **Identify the unit digit of the base**: The unit digit of \( 17 \) is \( 7 \). 2. **Determine the cycle of unit digits for powers of \( 7 \)**: - \( 7^1 = 7 \) (unit digit is \( 7 \)) - \( 7^2 = 49 \) (unit digit is \( 9 \)) - \( 7^3 = 343 \) (unit digit is \( 3 \)) - \( 7^4 = 2401 \) (unit digit is \( 1 \)) - The cycle repeats every 4: \( 7, 9, 3, 1 \). 3. **Find the exponent modulo 4**: - Calculate \( 17 \mod 4 \): \[ 17 \div 4 = 4 \quad \text{(remainder } 1\text{)} \] - So, \( 17 \mod 4 = 1 \). 4. **Use the cycle to find the unit digit**: - The first position in the cycle \( (7, 9, 3, 1) \) corresponds to \( 7 \). - Therefore, the unit digit of \( 17^{17} \) is \( 7 \). ### Step 3: Calculate the unit digit of \( 23^{23} - 17^{17} \) 1. **Subtract the unit digits**: - Unit digit of \( 23^{23} \) is \( 7 \). - Unit digit of \( 17^{17} \) is \( 7 \). - Therefore, we calculate: \[ 7 - 7 = 0 \] ### Conclusion The unit digit of \( 23^{23} - 17^{17} \) is \( 0 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value unit digit of 2^(47) xx 3^(23) ?

The unit digit of 17^(1983) + 11^(1983) is

Evaluate: 23^(3)-17^(3)

What will be the last digit of 7^(23^(12))?

What will be the last digit of 7^(23^(12))?

What is the value of [(2.3)^(3) – (1.7)^(3)] / [(2.3)^(2) + (2.3 xx 1.7) + (1.7)^(2)] ?

What is the remainder when (17^(23)+23^(23)+29^(23)) is divided by 23 ?