Home
Class 7
MATHS
sqrt((256a^(4)b^(4))/(625a^(6)b^(2))) = ...

`sqrt((256a^(4)b^(4))/(625a^(6)b^(2))) = "_______"`

A

`(16b)/(25a^(2))`

B

`(16b)/(25a)`

C

`(4b)/(25a)`

D

`(4b^(2))/(25a)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((256a^(4)b^(4))/(625a^(2)b^(2))) = "_______"

sqrt(a^(3)b^(4))xx sqrt(a^(6)b^(3))

sqrt(a^(3)b^(4))xx sqrt(a^(6)b^(3))

If sqrt((125 a^(6) b^(4) c^(2))/(5a^(4) b^(2))) = x, " then find " (x^(2))/(abc)

root(4)((256)^(-2))

Find (a^(4) +b^(4))/(a^(2)-ab sqrt2 + b^(2)) , if x= a^(2) + b^(2) and y= ab sqrt2

Simplify : (1)sqrt((256)^((1)/(4)))(2)(1)/(4)(128)^((1)/(3))

Prove that . (i) [8^(-(2)/(3)) xx 2^((1)/(2))xx 25^(-(5)/(4))] div[32^(-(2)/(5)) xx 125 ^(-(5)/(6)) ] = sqrt(2) (ii) ((64)/(125))^(-(2)/(3)) = (1)/(((256)/(625))^((1)/(4)))+ (sqrt(25))/(root3(64)) = (65)/(16) (iii) [7{(81)^((1)/(4)) +(256)^((1)/(4))}^((1)/(4))]^(4) = 16807 .

If a^(2) +b^(2) = x, ab = y then the value of (a^(4) +b^(4))/(a^(2) -ab sqrt(2) +b^(2)) is

Suppose a and b are two different complete numbers such that |a + sqrt(a^(2) - b^(2))| + | a - sqrt(a^(2) - b^(2))| = |a + b| + 4 then |a-b| is equal to _________