Home
Class 7
MATHS
(x^(4))/(4) + (y^(3))/(3) - (3z^(2))/(5)...

`(x^(4))/(4) + (y^(3))/(3) - (3z^(2))/(5) + (x^(4))/(3) - (3y^(3))/(5) + (z^(2))/(4) - (3x^(4))/(5) + (y^(3))/(4) + (z^(2))/(3) = "________"`.

A

`-1/60(x^(4)+y^(3) + z^(2))`

B

`1/60 (x^(4) - y^(3) + z^(2))`

C

`(x^(4) + y^(3) + z^(2))/60`

D

`(x^(4) + y^(3) - z^(2))/60`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the lines : (i) (x -5)/(7) = (y + 2)/(-5) = (z)/(1) " " and (x)/(1) = (y)/(2) = (z)/(3) (ii) (x - 3)/(2) = (y + 1)/(-3) = (z - 2)/(4) and (x + 2)/(2) = (y - 4)/(4) = (z + 5)/(2) are perpendicular to each other .

Subtract: (3)/(2)x-(5)/(4)y-(7)/(2)z om (2)/(3)x+(3)/(2)y-(4)/(3)z

Simplify: (15x^(5)y^(-2)z^(4))/(5x^(3)y^(-3)z^(2))

The HCF of x^(3)y^(2)z^(5) and x^(2)y^(4)z^(3) is

Factorize: ((x)/(2)+y+(z)/(3))^(3)+((x)/(3)-(2y)/(3)+z)^(3)+(-(5x)/(6)-(y)/(3)-(4z)/(3))^(3)

If (3)/(2x)+(4)/(3y)=(3)/(5z), then z will be

The image of the line (x-1)/(3)=(y-3)/(1)=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1)(x+3)/(3)=(y-5)/(1)=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/(5) (3) (x-3)/(3)=(y+5)/(1)=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/(5)