Home
Class 7
MATHS
Factorise 25x^(2) - 30xy + 9y^(2). The...

Factorise `25x^(2) - 30xy + 9y^(2)`.
The following steps are involved in solving the above problem . Arrange them in sequential order .
(A) `(5x - 3y)^(2) " " [ because a^(2) - 2b + b^(2) = (a-b)^(2)]`
(B) `(5x)^(2) - 30xy + (3y)^(2) = (5x)^(2) - 2(5x)(3y) + (3y)^(2)`
(C) `(5x - 3y) (5x - 3y)`

A

ABC

B

BCA

C

ACB

D

BAC

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise: 5a (2x -3y) + 2b (2x -3y)

The following steps are involved in expanding (x+ 3y)^(2) . Arrange them in sequential order from the first to the last . (A) (x + 3y)^(2) = x^(2) + 6xy + 9y^(2) (B) (x + 3y)^(2) = (x)^(2) + 2(x)(3y) + (3y)^(2) (C) Using the identify (a + b)^(2) = a^(2) + 2ab + b^(2) , where a = x and b = 3y.

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

If (2x^2-y^2)^4=256 and (x^2+y^2)^5=243 , then find x^4-y^4 The following steps are involved in solving the above problem. Arragne then in sequential order. (A) (x^2-y^2)^4=256=4^4 and (x^2+y^2)^5=3^5 (B) x^4-y^4=12 (C) (x^2-y^2)(x^2+y^2)=4xx3 (D) x^2-y^2=4 and x^2+y^2=3

Add : 4x^(2)y, - 3xy^(2), -5xy^(2), 5x^(2)y