Home
Class 7
MATHS
If ((a)/(b))^((5)/(14))+ ((b)/(a))^((5)/...

If `((a)/(b))^((5)/(14))+ ((b)/(a))^((5)/(14))=6` then find the value of `((a)/(b))^((5)/(7))+((b)/(a))^((5)/(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{a}{b}\right)^{\frac{5}{14}} + \left(\frac{b}{a}\right)^{\frac{5}{14}} = 6\) and find the value of \(\left(\frac{a}{b}\right)^{\frac{5}{7}} + \left(\frac{b}{a}\right)^{\frac{5}{7}}\), we can follow these steps: ### Step 1: Let \(x = \left(\frac{a}{b}\right)^{\frac{5}{14}}\) We can rewrite the given equation in terms of \(x\): \[ x + \frac{1}{x} = 6 \] ### Step 2: Multiply both sides by \(x\) This gives us: \[ x^2 + 1 = 6x \] ### Step 3: Rearrange the equation Rearranging gives us a standard quadratic equation: \[ x^2 - 6x + 1 = 0 \] ### Step 4: Use the quadratic formula The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] In our case, \(a = 1\), \(b = -6\), and \(c = 1\): \[ x = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ x = \frac{6 \pm \sqrt{36 - 4}}{2} \] \[ x = \frac{6 \pm \sqrt{32}}{2} \] \[ x = \frac{6 \pm 4\sqrt{2}}{2} \] \[ x = 3 \pm 2\sqrt{2} \] ### Step 5: Choose the positive root Since \(x\) represents a power, we take the positive root: \[ x = 3 + 2\sqrt{2} \] ### Step 6: Find \(\left(\frac{a}{b}\right)^{\frac{5}{7}}\) We know that: \[ \left(\frac{a}{b}\right)^{\frac{5}{7}} = \left(\left(\frac{a}{b}\right)^{\frac{5}{14}}\right)^2 = x^2 \] ### Step 7: Calculate \(x^2\) Calculating \(x^2\): \[ x^2 = (3 + 2\sqrt{2})^2 = 9 + 12\sqrt{2} + 8 = 17 + 12\sqrt{2} \] ### Step 8: Find \(\left(\frac{b}{a}\right)^{\frac{5}{7}}\) Similarly, we have: \[ \left(\frac{b}{a}\right)^{\frac{5}{7}} = \left(\frac{1}{x}\right)^{\frac{5}{7}} = \frac{1}{x^2} \] ### Step 9: Calculate \(\frac{1}{x^2}\) To find \(\frac{1}{x^2}\): \[ \frac{1}{x^2} = \frac{1}{17 + 12\sqrt{2}} \] To rationalize the denominator: \[ \frac{1}{17 + 12\sqrt{2}} \cdot \frac{17 - 12\sqrt{2}}{17 - 12\sqrt{2}} = \frac{17 - 12\sqrt{2}}{(17 + 12\sqrt{2})(17 - 12\sqrt{2})} \] Calculating the denominator: \[ (17)^2 - (12\sqrt{2})^2 = 289 - 288 = 1 \] Thus: \[ \frac{1}{x^2} = 17 - 12\sqrt{2} \] ### Step 10: Combine the results Now we can find: \[ \left(\frac{a}{b}\right)^{\frac{5}{7}} + \left(\frac{b}{a}\right)^{\frac{5}{7}} = x^2 + \frac{1}{x^2} = (17 + 12\sqrt{2}) + (17 - 12\sqrt{2}) = 34 \] ### Final Answer Thus, the value of \(\left(\frac{a}{b}\right)^{\frac{5}{7}} + \left(\frac{b}{a}\right)^{\frac{5}{7}} = 34\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (a)/(b) = (4)/(5) , then find the value of (4a+5b)/(5b) .

(5)/(7)+((5)/(14)times(6)/(21))=

(5)/(7)((5)/(14)times(6)/(21))=

If(a+b)=5,then the value of (a-3)^(7)+(b-2)^(7) is:

Find the reciprocal of: (a) 3/7 (b) 6/5

If a-b = 5, ab = 14, find the value of a + b

Find the value of a and b if (2+5sqrt(7))/(2-5sqrt(7))=(a+sqrt(7)b)

Find the value of : (a) | 3/5 - 2/3 | ( b ) | -5/7 + 1 |