Home
Class 7
MATHS
Prove that ((x^(-1)+y^(-1)))/(x^(-1))+((...

Prove that `((x^(-1)+y^(-1)))/(x^(-1))+((x^(-1)+y^(-1)))/(y^(-1))=(x+y)^2/(xy)`

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((x^(-1)+y^(-1))/x^(-1))^(-1)+((x^(-1)-y^(-1))/x^(-1))^(-1)=(2y^(2))/(y^(2)-x^(2))

(x^(-3)-y^(-3))/(x^(-3)y^(-1)+(xy)^(-2)+y^(-3)x^(-1))=

underset Prove that ((x ^ (- 1) + y ^ (- 1)) / (x ^ (- 1))) ^ (- 1) + ((x ^ (- 1) -y ^ (- 1) ) / (x ^ (- 1))) ^ (- 1) = (2y ^ (2)) / (y ^ (2) -x ^ (2))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

What is the expression (x+y)^(-1) (x^(-1) +y^(-1)) (xy^(-1) +x^(-1)y)^(-1) equal to:

Prove that tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))}=(x+y)/(1-xy) , where |x| lt 1,y gt 0 and xy lt 1 .

If xy+yz+xz=1, then prove that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

Prove that: tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^(2))(1+y^(2)))))

If x + y + z = xyz , prove that x(1 -y^(2)) (1- z^(2))+ y(1- z^(2))(1- x^(2)) +z(1-x^(2)) (1- y^(2)) = 4xyz .

When simplified (x^(-1)+y^(-1))^(1-) is equal to xy( b) x+y( c) (xy)/(x+y) (d) (x+y)/(xy)