Home
Class 7
MATHS
If 3^x=9r=27^(z)=729, then show that x+y...

If `3^x=9r=27^(z)=729`, then show that `x+y+z=11`.

Text Solution

Verified by Experts

The correct Answer is:
Either I or II
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^x=9^y=27^(z)=729 , then show that x+y+z=11 .

If (x+y)/(p^(3)-q^(3)) = (y+z)/(q^(3)-r^(3)) = (z+x)/(r^(3)-p^(3)) , then prove that x + y + z = 0.

If, 2^(x+y-2z)=8^(8z-5-y), 5^(4y-6z)= 25^(y+z), 3^(4x-3z)=9^(x+z) then the value of 2x+3y+5z is: यदि 2^(x+y-2z)=8^(8z-5-y), 5^(4y-6z)= 25^(y+z), 3^(4x-3z)=9^(x+z) है, तो 2x+3y+5z का मान क्या होगा ?

If 3 rational numbers x^(1//x) , y^(1//y) and z^(1//z) are equal and x^(yz)+y^(zx)+z^(xy)=729 , then find the value of x^(1//x)

If 3x+6y+9z=20/3, 6x+9y+3z=17/3 and 18x+27 y-z=113/9 , then what is the value of 75x+ 113y?

If x+y+z=a , show that (1/x+1/y+1/z)^-1ge9/a

If quad x+y+z=0 show that x^(3)+y^(3)+z^(3)=3xyz

If x : y : z = 3 : 4 : 9, then what will be the value of (2x + 3y + z) : (2z + x – 3y)?