Home
Class 7
MATHS
(33^(2)-31^(2))^((6)/(7))=...

`(33^(2)-31^(2))^((6)/(7))`=____

A

64

B

16

C

32

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((33^{2} - 31^{2})^{\frac{6}{7}}\), we will use the difference of squares identity. Here’s the step-by-step solution: ### Step 1: Apply the Difference of Squares Identity The difference of squares identity states that \(a^{2} - b^{2} = (a - b)(a + b)\). In our case, let \(a = 33\) and \(b = 31\). \[ 33^{2} - 31^{2} = (33 - 31)(33 + 31) \] ### Step 2: Calculate \(33 - 31\) and \(33 + 31\) Now we will calculate the values: \[ 33 - 31 = 2 \] \[ 33 + 31 = 64 \] ### Step 3: Substitute Back into the Expression Now substitute these values back into the expression: \[ 33^{2} - 31^{2} = 2 \times 64 \] ### Step 4: Calculate \(2 \times 64\) Now we calculate: \[ 2 \times 64 = 128 \] ### Step 5: Raise to the Power of \(\frac{6}{7}\) Now we substitute this back into the original expression: \[ (33^{2} - 31^{2})^{\frac{6}{7}} = 128^{\frac{6}{7}} \] ### Step 6: Simplify \(128^{\frac{6}{7}}\) We know that \(128 = 2^{7}\), so we can rewrite it as: \[ 128^{\frac{6}{7}} = (2^{7})^{\frac{6}{7}} = 2^{7 \cdot \frac{6}{7}} = 2^{6} \] ### Step 7: Calculate \(2^{6}\) Finally, we calculate \(2^{6}\): \[ 2^{6} = 64 \] ### Final Answer Thus, the value of \((33^{2} - 31^{2})^{\frac{6}{7}}\) is: \[ \boxed{64} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(33^2-31^2)^((5)/(7))= _____

Prove that (2^(30)+2^(29)+2^(28))/(2^(31)+2^(30)-2^(29))=(7)/(10)

PRove that (2^(30)+2^(29)+2^(28))/(2^(31)+2^(30)-2^(29))=(7)/(10)

The value of ((6^(-1)7^(2))/(6^(2)7^(-4)))^((7)/(2))xx((6^(-2)7^(3))/(6^(3)7^(-5)))^(-(5)/(2)) is

(11)_(2)+(22)_(3)+(33)_(4)+(55)_(6)+(66)_(7)+(77)_(8)+(88)_(9)=(?)_(10)

If N^(2)-33, N^(2)-31 and N^(2)-29 are prime numbers, then what is the number of possible values of N, where N is an integer?

A=[[cos((2 pi)/(33)),sin((2 pi)/(33))],[-sin((2 pi)/(33)),cos((2 pi)/(33))]] , then A^(2017)=

What is the value of (1)/(30.31) +(1)/(31.32)+(1)/(32.33) + …+ (1)/(89.90) ?